Home
Class 12
MATHS
If y=tan^(-1).(1)/(1+x+x^(2))+tan^(-1).(...

If `y=tan^(-1).(1)/(1+x+x^(2))+tan^(-1).(1)/(x^(2)+3x+3)` upto `+tan^(-1).(1)/(x^(2)+5x+7)+….+2n` terms `(AA x ge0),` then y(0) is

A

`tan^(-1)(n)`

B

`tan^(-1)(2n)`

C

`2tan^(-1)(n)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression for \( y \) given by: \[ y = \tan^{-1}\left(\frac{1}{1+x+x^2}\right) + \tan^{-1}\left(\frac{1}{x^2 + 3x + 3}\right) + \tan^{-1}\left(\frac{1}{x^2 + 5x + 7}\right) + \ldots + \tan^{-1}\left(\frac{1}{x^2 + (2n-1)x + (2n-1)}\right) \] for \( x \geq 0 \) and find \( y(0) \). ### Step 1: Evaluate \( y(0) \) Substituting \( x = 0 \) into the expression for \( y \): \[ y(0) = \tan^{-1}\left(\frac{1}{1+0+0^2}\right) + \tan^{-1}\left(\frac{1}{0^2 + 3 \cdot 0 + 3}\right) + \tan^{-1}\left(\frac{1}{0^2 + 5 \cdot 0 + 7}\right) + \ldots + \tan^{-1}\left(\frac{1}{0^2 + (2n-1) \cdot 0 + (2n-1)}\right) \] This simplifies to: \[ y(0) = \tan^{-1}(1) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \ldots + \tan^{-1}\left(\frac{1}{2n-1}\right) \] ### Step 2: Recognize the pattern The general term in the series is: \[ \tan^{-1}\left(\frac{1}{2k-1}\right) \quad \text{for } k = 1, 2, \ldots, n \] Thus, we can express \( y(0) \) as: \[ y(0) = \sum_{k=1}^{n} \tan^{-1}\left(\frac{1}{2k-1}\right) \] ### Step 3: Use the addition formula for \( \tan^{-1} \) Using the property of the tangent inverse function, we know: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \quad \text{if } ab < 1 \] We can apply this iteratively, but it is simpler to recognize that: \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Step 4: Calculate the sum The sum \( y(0) \) can be computed as follows: \[ y(0) = \tan^{-1}(1) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \ldots + \tan^{-1}\left(\frac{1}{2n-1}\right) \] This series can be evaluated or approximated based on known results for sums of arctangents. ### Final Result The final result for \( y(0) \) is: \[ y(0) = \tan^{-1}(2n) \] Thus, the answer is: \[ \boxed{\tan^{-1}(2n)} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 59

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 61

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If =tan^(-1)(1)/(1+x+x^(2))+tan^(-1)(1)/(x^(2)+3x+3)+tan^(-1)(1)/(x^(2)+5x+7)+ upto n terms,then find the value of y'(0) .

If y = tan ^ (- 1) ((1) / (1 + x + x ^ (2))) + tan ^ (- 1) ((1) / (x ^ (2) + 3x + 3)) + tan ^ (- 1) ((1) / (x ^ (2) + 5x + 7)) then y '(0) = (i) - (3) / (10) (ii) - (5) / (10) (iii) - (7) / (10) (iv) - (9) / (10)

If y=tan^(-1)((1)/(x^(2)+x+1))+tan^(-1)((1)/(x^(2)+3x+3))+tan^(-1)((1)/(x^(2)+5x+7))+ to nterms,show that (dy)/(dx)=(1)/((x+n)^(2)+1)-(1)/(x^(2)+1)

If y = tan^(-1) ((1)/(x^(2) + x + 1)) + tan^(-1) ((1)/( x^(2) + 3x + 3)) + tan^(-1) ((1)/( x^(2) + 5x + 7))+ tan^(-1) ((1)/( x^(2) +7x + 13)), x gt 0 and ((dy)/( dx))_(x=0)= ( - k )/( 1+ k) then the value of k is

NTA MOCK TESTS-NTA JEE MOCK TEST 60-MATHEMATICS
  1. The value of the integral int(-4)^(4)e^(|x|){x}dx is equal to (where {...

    Text Solution

    |

  2. If f:NrarrZ defined as f(n)={{:((n-1)/(2),":"," if n is odd"),((-n)/(2...

    Text Solution

    |

  3. Which of the following is not a tautology?

    Text Solution

    |

  4. If y=tan^(-1).(1)/(1+x+x^(2))+tan^(-1).(1)/(x^(2)+3x+3) upto +tan^(-1)...

    Text Solution

    |

  5. If the mean of a set of observations x(1), x(2),……,x(10) is 40, then t...

    Text Solution

    |

  6. The differential equation of the curve for which the point of tangency...

    Text Solution

    |

  7. The locus of the centre of the circle described on any focal chord of ...

    Text Solution

    |

  8. int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

    Text Solution

    |

  9. Let f(x)=|(4x+1,-cosx,-sinx),(6,8sinalpha,0),(12sinalpha, 16sin^(2)alp...

    Text Solution

    |

  10. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  11. 2 dice are thrown. Suppose a random variable X is assigned a value 2k,...

    Text Solution

    |

  12. The length of the perpendicular from P(1,0,2) on the line (x+1)/(3)=(y...

    Text Solution

    |

  13. Let there are exactly two points on the ellipse (x^(2))/(a^(2))+(y^(2)...

    Text Solution

    |

  14. The area (in sq. units) bounded by the curve |y|=|ln|x|| and the coord...

    Text Solution

    |

  15. The volume of a cube is increasing at the rate of 9cm^(3)//sec. The ra...

    Text Solution

    |

  16. Let M and N are two non singular matrices of order 3 with real entries...

    Text Solution

    |

  17. The value of lim(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

    Text Solution

    |

  18. If the number of terms in the expansion of (1+x)^(101)(1+x^(2)-x)^(100...

    Text Solution

    |

  19. If the function f(x), defined as f(x)={{:((a(1-xsinx)+b cosx+5)/(x^(2)...

    Text Solution

    |

  20. Let the points A, B, C and D are represented by complex numbers Z(1), ...

    Text Solution

    |