Home
Class 12
MATHS
If the function f(x)=(sin3x+a sin 2x+b)/...

If the function `f(x)=(sin3x+a sin 2x+b)/(x^(3)), x ne 0` is continuous at `x=0` and `f(0)=K, AA K in R`, then `b-a` is equal to

A

4

B

`(5)/(2)`

C

5

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) = \frac{\sin(3x) + a \sin(2x) + b}{x^3} \) is continuous at \( x = 0 \). This means that the limit of \( f(x) \) as \( x \) approaches 0 must equal \( f(0) = K \). ### Step 1: Find the limit as \( x \to 0 \) We need to evaluate: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin(3x) + a \sin(2x) + b}{x^3} \] ### Step 2: Use Taylor series expansion Using the Taylor series expansion for \( \sin(x) \): - \( \sin(3x) \approx 3x - \frac{(3x)^3}{6} + O(x^5) = 3x - \frac{27x^3}{6} + O(x^5) \) - \( \sin(2x) \approx 2x - \frac{(2x)^3}{6} + O(x^5) = 2x - \frac{8x^3}{6} + O(x^5) \) Substituting these expansions into \( f(x) \): \[ \sin(3x) + a \sin(2x) + b \approx \left(3x - \frac{27x^3}{6}\right) + a\left(2x - \frac{8x^3}{6}\right) + b \] \[ = (3 + 2a)x - \left(\frac{27}{6} + \frac{8a}{6}\right)x^3 + b \] ### Step 3: Combine terms Now, we can rewrite \( f(x) \): \[ f(x) = \frac{(3 + 2a)x + b - \left(\frac{27 + 8a}{6}\right)x^3}{x^3} \] \[ = \frac{(3 + 2a)}{x^2} + \frac{b}{x^3} - \frac{27 + 8a}{6} \] ### Step 4: Evaluate the limit For \( f(x) \) to be continuous at \( x = 0 \), the terms involving \( x \) must vanish as \( x \to 0 \). This means: 1. The coefficient of \( x^2 \) must be zero: \[ 3 + 2a = 0 \implies a = -\frac{3}{2} \] 2. The constant term must equal zero: \[ b = 0 \] ### Step 5: Calculate \( b - a \) Now we can find \( b - a \): \[ b - a = 0 - \left(-\frac{3}{2}\right) = \frac{3}{2} \] ### Final Answer Thus, \( b - a = \frac{3}{2} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 67

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 70

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2x+3sin x)/(3x+2sin x),x!=0 is continuous at x=0, then find f(0)

f(x)=(x tan2x)/(sin3x*sin5x) for x!=0 is continuous at x=0 then f(0)

Knowledge Check

  • If f(x) = (a sin x + sin 2x)/(x^(3)) ne 0 and f(x) is continuous at x =0 then

    A
    a=2
    B
    f(0) =1
    C
    f(0) =-1
    D
    a =1
  • If the function f(x) {: (3 sin x - sin 3x)/(x^(3)), x != 0 , is continuous at the point x = 0 , then : f(0) =

    A
    `-4`
    B
    4
    C
    0
    D
    6
  • If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) for x!=0 is continuous at x=0 , then A+B+f(0) is

    A
    0
    B
    4
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    The function f(x)=(3sin x-sin3x)/(x^(3)) for x!=0;f(0)=1 at x=0 is

    A function f(x) is defined as f(x)=(A sin x+sin2x)/(x^(3)), If the function is continuous at x=0, then

    If f(x)=(sin2x+A sin x+B cos x)/(x^(3)) is continuous at x=0, the value of A,B and f(0) are :

    If f (x) = (2x + 3 sin x )/(3x + 2 sin x ) , x ne 0 is continous at x = 0 then f (0) = ?

    If f(x)=(2x+3sin x)/(3x+2sin x),x!=0 is continuous at x=0, then find f(0)