Home
Class 12
MATHS
Let veca=2hati-hatj+3hatk, vecb=hati+hat...

Let `veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk` and non - zero vector `vecc` are such that `(veca xx vecb)xx vecc =veca xx(vecb xx vecc)`, then vector `vecc` may be

A

`4hati-2hatj+6hatk`

B

`4hati+2hatj+6hatk`

C

`hati+hatj-hatk`

D

`hati-4hatj+hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and the condition provided. Let's denote the vectors as follows: - \(\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}\) - \(\vec{b} = \hat{i} + \hat{j} - 4\hat{k}\) - \(\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}\) We need to find the vector \(\vec{c}\) such that: \[ (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \] ### Step 1: Calculate \(\vec{a} \times \vec{b}\) Using the determinant method for the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ 1 & 1 & -4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 3 \\ 1 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ 1 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -1 & 3 \\ 1 & -4 \end{vmatrix} = (-1)(-4) - (3)(1) = 4 - 3 = 1\) 2. \(\begin{vmatrix} 2 & 3 \\ 1 & -4 \end{vmatrix} = (2)(-4) - (3)(1) = -8 - 3 = -11\) 3. \(\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (-1)(1) = 2 + 1 = 3\) Putting it all together: \[ \vec{a} \times \vec{b} = \hat{i}(1) - \hat{j}(-11) + \hat{k}(3) = \hat{i} + 11\hat{j} + 3\hat{k} \] ### Step 2: Calculate \((\vec{a} \times \vec{b}) \times \vec{c}\) Now we need to calculate: \[ (\vec{a} \times \vec{b}) \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 11 & 3 \\ x & y & z \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 11 & 3 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 11 \\ x & y \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 11 & 3 \\ y & z \end{vmatrix} = 11z - 3y\) 2. \(\begin{vmatrix} 1 & 3 \\ x & z \end{vmatrix} = z - 3x\) 3. \(\begin{vmatrix} 1 & 11 \\ x & y \end{vmatrix} = y - 11x\) Thus, \[ (\vec{a} \times \vec{b}) \times \vec{c} = (11z - 3y)\hat{i} - (z - 3x)\hat{j} + (y - 11x)\hat{k} \] ### Step 3: Calculate \(\vec{b} \times \vec{c}\) Now we calculate: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -4 \\ x & y & z \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & -4 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -4 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 1 & -4 \\ y & z \end{vmatrix} = z + 4y\) 2. \(\begin{vmatrix} 1 & -4 \\ x & z \end{vmatrix} = z + 4x\) 3. \(\begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} = y - x\) Thus, \[ \vec{b} \times \vec{c} = (z + 4y)\hat{i} - (z + 4x)\hat{j} + (y - x)\hat{k} \] ### Step 4: Calculate \(\vec{a} \times (\vec{b} \times \vec{c})\) Now we calculate: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ (z + 4y) & -(z + 4x) & (y - x) \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} -1 & 3 \\ -(z + 4x) & (y - x) \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 3 \\ (z + 4y) & (y - x) \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1 \\ (z + 4y) & -(z + 4x) \end{vmatrix} \] Calculating these determinants will yield the final expression for \(\vec{a} \times (\vec{b} \times \vec{c})\). ### Step 5: Set the two expressions equal Now we equate the coefficients from both sides of the equation: \[ (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \] ### Step 6: Solve for \(x\), \(y\), and \(z\) From the equations obtained, we can derive relationships between \(x\), \(y\), and \(z\). ### Final Step: Express \(\vec{c}\) Once we have the relationships, we can express \(\vec{c}\) in terms of a parameter \(m\) (if necessary) to find the vector \(\vec{c}\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 71

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.veca = 2 and veca xx vecc = vecb

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj+hatk and vec=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc be vector such that |vecc -veca|=3, |(veca xx vecb) xx vecc|=3 and the angle between vecc and veca xx vecb " be " 30^(@) Then , veca . Vecc is equal to

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

NTA MOCK TESTS-NTA JEE MOCK TEST 72-MATHEMATICS
  1. If f:A rarr B defined as f(x)=2sinx-2 cos x+3sqrt2 is an invertible fu...

    Text Solution

    |

  2. The average weight of students in a class of 32 students is 40 kg. If ...

    Text Solution

    |

  3. An observer finds that the angular elevation of a tower is theta. On a...

    Text Solution

    |

  4. Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector ...

    Text Solution

    |

  5. Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and ...

    Text Solution

    |

  6. A plane P(1) has the equation 4x-2y+2z=3 and P(2) has the equation -x+...

    Text Solution

    |

  7. Let A=[(0, i),(i, 0)], where i^(2)=-1. Let I denotes the identity matr...

    Text Solution

    |

  8. The inequality .^(n+1)C(6)-.^(n)C(4) gt .^(n)C(5) holds true for all n...

    Text Solution

    |

  9. Find the values of m for which roots of equation x^(2)-mx+1=0 are less...

    Text Solution

    |

  10. The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)...

    Text Solution

    |

  11. The solution of the differential equation (dy)/(dx)+(xy)/(1-x^(2))=xsq...

    Text Solution

    |

  12. The limit L=lim(nrarroo)Sigma(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

    Text Solution

    |

  13. If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2...

    Text Solution

    |

  14. The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a, ...

    Text Solution

    |

  15. If A={x:x=3^(n)-2n-1, n in N} and B={x:x = 4(n-1), n in N}. Then

    Text Solution

    |

  16. If the area bounded by the curves x^(2)+y^(2) le 4, x+y le 2, and y ge...

    Text Solution

    |

  17. The second term of an infinte geometric progression is 2 and its sum t...

    Text Solution

    |

  18. The probability of a bomb hitting a bridge is (2)/(3). Two direct hits...

    Text Solution

    |

  19. The value of lim(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal...

    Text Solution

    |

  20. The number of distinct complex number(s) z, such that |z|=1 and z^(3) ...

    Text Solution

    |