Home
Class 12
MATHS
Let a, b and c are the roots of the equa...

Let a, b and c are the roots of the equation `x^(3)-7x^(2)+9x-13=0` and A and B are two matrices given by `A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))]`, then the value `|A||B|` is equal to

A

`-154`

B

`-(154)^(3)`

C

`-22`

D

`-(22)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the product of the determinants of matrices A and B, denoted as \(|A||B|\). We start by analyzing the given polynomial and the matrices. ### Step 1: Identify the roots of the polynomial The polynomial given is: \[ x^3 - 7x^2 + 9x - 13 = 0 \] Let \(a\), \(b\), and \(c\) be the roots of this polynomial. By Vieta's formulas, we know: - \(a + b + c = 7\) - \(ab + bc + ca = 9\) - \(abc = 13\) ### Step 2: Formulate matrix A The matrix \(A\) is given by: \[ A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] ### Step 3: Calculate the determinant of matrix A To find the determinant of matrix \(A\), we can use the formula for the determinant of a 3x3 matrix: \[ |A| = a \begin{vmatrix} c & a \\ a & b \end{vmatrix} - b \begin{vmatrix} b & a \\ c & b \end{vmatrix} + c \begin{vmatrix} b & c \\ c & a \end{vmatrix} \] Calculating the minors: 1. \(\begin{vmatrix} c & a \\ a & b \end{vmatrix} = cb - a^2\) 2. \(\begin{vmatrix} b & a \\ c & b \end{vmatrix} = bb - ac = b^2 - ac\) 3. \(\begin{vmatrix} b & c \\ c & a \end{vmatrix} = ba - c^2\) Substituting these into the determinant formula: \[ |A| = a(cb - a^2) - b(b^2 - ac) + c(ba - c^2) \] Expanding this gives: \[ |A| = acb - a^3 - b^3 + abc + abc - c^3 \] Combining like terms: \[ |A| = 3abc - (a^3 + b^3 + c^3) \] ### Step 4: Use the identity for \(a^3 + b^3 + c^3\) We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)((a + b + c)^2 - 3(ab + ac + bc)) \] Substituting the known values: \[ a^3 + b^3 + c^3 = 3abc + (a + b + c)((a + b + c)^2 - 3(ab + ac + bc)) \] Calculating: \[ = 3 \cdot 13 + 7(7^2 - 3 \cdot 9) = 39 + 7(49 - 27) = 39 + 7 \cdot 22 = 39 + 154 = 193 \] ### Step 5: Substitute back to find \(|A|\) Now substituting back into the determinant: \[ |A| = 3 \cdot 13 - 193 = 39 - 193 = -154 \] ### Step 6: Calculate the determinant of matrix B Since matrix \(B\) is the cofactor matrix of \(A\), we have: \[ |B| = |A|^2 \] Thus: \[ |B| = (-154)^2 = 23716 \] ### Step 7: Find \(|A||B|\) Now we can find: \[ |A||B| = |A| \cdot |B| = (-154) \cdot 23716 = -3652034 \] ### Final Answer The value of \(|A||B|\) is: \[ \boxed{-3652034} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 71

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

det[[bc-a^(2),ca-b^(2),ab-c^(2)ca-b^(2),ab-c^(2),bc-a^(2)ab-c^(2),bc-a^(2),ca-b^(2)]]=det[[a,b,cb,c,ac,a,b]]^(2)

|[b^(2)c^(2),bc,a-c],[c^(2)a^(2),ca,b-c],[a^(2)b^(2),ab,0]|=?

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

det[[a,a^(2),bcb,b^(2),cac,c^(2),ab]]=(a-b)(b-c)(c-a)(ab+bc+ca)

The roots of the equation a(b-2x)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0

The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are,when ab+bc+ca=0

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

If a+b+c=9anda^(2)+b^(2)+c^(2)=21 , then ab+bc+ca is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 72-MATHEMATICS
  1. If f:A rarr B defined as f(x)=2sinx-2 cos x+3sqrt2 is an invertible fu...

    Text Solution

    |

  2. The average weight of students in a class of 32 students is 40 kg. If ...

    Text Solution

    |

  3. An observer finds that the angular elevation of a tower is theta. On a...

    Text Solution

    |

  4. Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector ...

    Text Solution

    |

  5. Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and ...

    Text Solution

    |

  6. A plane P(1) has the equation 4x-2y+2z=3 and P(2) has the equation -x+...

    Text Solution

    |

  7. Let A=[(0, i),(i, 0)], where i^(2)=-1. Let I denotes the identity matr...

    Text Solution

    |

  8. The inequality .^(n+1)C(6)-.^(n)C(4) gt .^(n)C(5) holds true for all n...

    Text Solution

    |

  9. Find the values of m for which roots of equation x^(2)-mx+1=0 are less...

    Text Solution

    |

  10. The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)...

    Text Solution

    |

  11. The solution of the differential equation (dy)/(dx)+(xy)/(1-x^(2))=xsq...

    Text Solution

    |

  12. The limit L=lim(nrarroo)Sigma(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

    Text Solution

    |

  13. If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2...

    Text Solution

    |

  14. The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a, ...

    Text Solution

    |

  15. If A={x:x=3^(n)-2n-1, n in N} and B={x:x = 4(n-1), n in N}. Then

    Text Solution

    |

  16. If the area bounded by the curves x^(2)+y^(2) le 4, x+y le 2, and y ge...

    Text Solution

    |

  17. The second term of an infinte geometric progression is 2 and its sum t...

    Text Solution

    |

  18. The probability of a bomb hitting a bridge is (2)/(3). Two direct hits...

    Text Solution

    |

  19. The value of lim(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal...

    Text Solution

    |

  20. The number of distinct complex number(s) z, such that |z|=1 and z^(3) ...

    Text Solution

    |