Home
Class 12
MATHS
Let A=[(0, i),(i, 0)], where i^(2)=-1. L...

Let `A=[(0, i),(i, 0)]`, where `i^(2)=-1`. Let I denotes the identity matrix of order 2, then `I+A+A^(2)+A^(3)+……..A^(110)` is equal to

A

`[(0,i),(i,0)]`

B

`[(0,0),(0,)]`

C

`[(1,0),(0,1)]`

D

`[(-1,0),(0,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( I + A + A^2 + A^3 + \ldots + A^{110} \), where \( A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \) and \( I \) is the identity matrix of order 2. ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 0 \cdot 0 + i \cdot i = i^2 = -1 \) - First row, second column: \( 0 \cdot i + i \cdot 0 = 0 \) - Second row, first column: \( i \cdot 0 + 0 \cdot i = 0 \) - Second row, second column: \( i \cdot i + 0 \cdot 0 = i^2 = -1 \) Thus, we have: \[ A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = (-I) \cdot A = -A = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \] ### Step 3: Calculate \( A^4 \) Now, we calculate \( A^4 \): \[ A^4 = A^2 \cdot A^2 = (-I) \cdot (-I) = I \] ### Step 4: Identify the pattern From our calculations, we observe the following pattern: - \( A^0 = I \) - \( A^1 = A \) - \( A^2 = -I \) - \( A^3 = -A \) - \( A^4 = I \) - \( A^5 = A \) - \( A^6 = -I \) - \( A^7 = -A \) - ... This pattern repeats every 4 terms. Thus, we can summarize: - \( A^{4n} = I \) - \( A^{4n+1} = A \) - \( A^{4n+2} = -I \) - \( A^{4n+3} = -A \) ### Step 5: Calculate \( I + A + A^2 + A^3 + \ldots + A^{110} \) Now, we need to find how many complete cycles of 4 fit into 110: \[ 110 = 4 \times 27 + 2 \] This means we have 27 complete cycles of \( I, A, -I, -A \) and then the additional terms \( I + A \) from the next cycle. Calculating the contribution from the complete cycles: Each complete cycle contributes: \[ I + A - I - A = 0 \] Thus, the contribution from 27 cycles is: \[ 27 \times 0 = 0 \] Now, we add the remaining terms: \[ I + A \] ### Final Result Therefore, the final result is: \[ I + A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \] Thus, the answer is: \[ \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 71

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If I_(3) is identity matrix of order 3, then I_(3)^(-1)=

Let A denote the matrix ({:(0,i),(i,0):}) , where i^(2) = -1 , and let I denote the identity matrix ({:(1,0),(0,1):}) . Then I + A + A^(2) + "….." + A^(2010) is -

Let a be a matrix of order 2xx2 such that A^(2)=O . A^(2)-(a+d)A+(ad-bc)I is equal to

If I_3 is the identity matrix of order 3 then I_3^-1 is (A) 0 (B) 3I_3 (C) I_3 (D) does not exist

Let a be a matrix of order 2xx2 such that A^(2)=O . (I+A)^(100) =

Let A = [(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity matrix . Then 2A^(2) -A^(3) =

Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

Let A=[[0,10,0]] show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is the identity matrix of order 2 and n in N

NTA MOCK TESTS-NTA JEE MOCK TEST 72-MATHEMATICS
  1. If f:A rarr B defined as f(x)=2sinx-2 cos x+3sqrt2 is an invertible fu...

    Text Solution

    |

  2. The average weight of students in a class of 32 students is 40 kg. If ...

    Text Solution

    |

  3. An observer finds that the angular elevation of a tower is theta. On a...

    Text Solution

    |

  4. Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector ...

    Text Solution

    |

  5. Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and ...

    Text Solution

    |

  6. A plane P(1) has the equation 4x-2y+2z=3 and P(2) has the equation -x+...

    Text Solution

    |

  7. Let A=[(0, i),(i, 0)], where i^(2)=-1. Let I denotes the identity matr...

    Text Solution

    |

  8. The inequality .^(n+1)C(6)-.^(n)C(4) gt .^(n)C(5) holds true for all n...

    Text Solution

    |

  9. Find the values of m for which roots of equation x^(2)-mx+1=0 are less...

    Text Solution

    |

  10. The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)...

    Text Solution

    |

  11. The solution of the differential equation (dy)/(dx)+(xy)/(1-x^(2))=xsq...

    Text Solution

    |

  12. The limit L=lim(nrarroo)Sigma(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

    Text Solution

    |

  13. If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2...

    Text Solution

    |

  14. The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a, ...

    Text Solution

    |

  15. If A={x:x=3^(n)-2n-1, n in N} and B={x:x = 4(n-1), n in N}. Then

    Text Solution

    |

  16. If the area bounded by the curves x^(2)+y^(2) le 4, x+y le 2, and y ge...

    Text Solution

    |

  17. The second term of an infinte geometric progression is 2 and its sum t...

    Text Solution

    |

  18. The probability of a bomb hitting a bridge is (2)/(3). Two direct hits...

    Text Solution

    |

  19. The value of lim(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal...

    Text Solution

    |

  20. The number of distinct complex number(s) z, such that |z|=1 and z^(3) ...

    Text Solution

    |