Home
Class 12
MATHS
The inequality .^(n+1)C(6)-.^(n)C(4) gt ...

The inequality `.^(n+1)C_(6)-.^(n)C_(4) gt .^(n)C_(5)` holds true for all n greater than ________.

A

8

B

9

C

7

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \binom{n+1}{6} - \binom{n}{4} > \binom{n}{5} \), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \binom{n+1}{6} - \binom{n}{4} > \binom{n}{5} \] We can rearrange this to: \[ \binom{n+1}{6} > \binom{n}{5} + \binom{n}{4} \] ### Step 2: Apply the Combination Identity Using the combination identity \( \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \), we can simplify the right-hand side: \[ \binom{n}{5} + \binom{n}{4} = \binom{n+1}{5} \] Thus, our inequality becomes: \[ \binom{n+1}{6} > \binom{n+1}{5} \] ### Step 3: Apply the Combination Formula Using the formula for combinations, we can write: \[ \binom{n+1}{6} = \frac{(n+1)!}{6!(n-5)!} \quad \text{and} \quad \binom{n+1}{5} = \frac{(n+1)!}{5!(n-4)!} \] Now substituting these into our inequality gives: \[ \frac{(n+1)!}{6!(n-5)!} > \frac{(n+1)!}{5!(n-4)!} \] ### Step 4: Cancel Common Terms Since \( (n+1)! \) is common on both sides, we can cancel it out (assuming \( n+1 \neq 0 \)): \[ \frac{1}{6!(n-5)!} > \frac{1}{5!(n-4)!} \] ### Step 5: Simplify the Inequality This simplifies to: \[ 5!(n-4)! > 6!(n-5)! \] We know \( 6! = 6 \times 5! \), so we can rewrite the inequality as: \[ (n-4)! > 6(n-5)! \] Now, using the factorial property \( (n-4)! = (n-4)(n-5)! \), we can substitute: \[ (n-4)(n-5)! > 6(n-5)! \] ### Step 6: Cancel \( (n-5)! \) Assuming \( (n-5)! \neq 0 \) (which is true for \( n > 5 \)), we can cancel \( (n-5)! \): \[ n-4 > 6 \] ### Step 7: Solve for \( n \) Rearranging gives: \[ n > 10 \] ### Conclusion The inequality \( \binom{n+1}{6} - \binom{n}{4} > \binom{n}{5} \) holds true for all \( n > 10 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 71

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(3)+.^(n)C_(4)gt.^(n+1)C_(3) then

If .^(n)C_(8)=.^(n)C_(6) , find .^(n)C_(3) .

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

If ^(n)C_(8)=^(n)C_(6), then find ^(n)C_(2)

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3) , then

NTA MOCK TESTS-NTA JEE MOCK TEST 72-MATHEMATICS
  1. If f:A rarr B defined as f(x)=2sinx-2 cos x+3sqrt2 is an invertible fu...

    Text Solution

    |

  2. The average weight of students in a class of 32 students is 40 kg. If ...

    Text Solution

    |

  3. An observer finds that the angular elevation of a tower is theta. On a...

    Text Solution

    |

  4. Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector ...

    Text Solution

    |

  5. Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and ...

    Text Solution

    |

  6. A plane P(1) has the equation 4x-2y+2z=3 and P(2) has the equation -x+...

    Text Solution

    |

  7. Let A=[(0, i),(i, 0)], where i^(2)=-1. Let I denotes the identity matr...

    Text Solution

    |

  8. The inequality .^(n+1)C(6)-.^(n)C(4) gt .^(n)C(5) holds true for all n...

    Text Solution

    |

  9. Find the values of m for which roots of equation x^(2)-mx+1=0 are less...

    Text Solution

    |

  10. The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)...

    Text Solution

    |

  11. The solution of the differential equation (dy)/(dx)+(xy)/(1-x^(2))=xsq...

    Text Solution

    |

  12. The limit L=lim(nrarroo)Sigma(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

    Text Solution

    |

  13. If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2...

    Text Solution

    |

  14. The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a, ...

    Text Solution

    |

  15. If A={x:x=3^(n)-2n-1, n in N} and B={x:x = 4(n-1), n in N}. Then

    Text Solution

    |

  16. If the area bounded by the curves x^(2)+y^(2) le 4, x+y le 2, and y ge...

    Text Solution

    |

  17. The second term of an infinte geometric progression is 2 and its sum t...

    Text Solution

    |

  18. The probability of a bomb hitting a bridge is (2)/(3). Two direct hits...

    Text Solution

    |

  19. The value of lim(xrarr0)(9ln (2-cos 25x))/(5ln^(2)(sin 3x+1)) is equal...

    Text Solution

    |

  20. The number of distinct complex number(s) z, such that |z|=1 and z^(3) ...

    Text Solution

    |