Home
Class 12
MATHS
Let a, b and c satisfy the system of equ...

Let a, b and c satisfy the system of equations
`a+2b+3c=6, 4a+5b+6c=12 " rad "6a+9b=4`. If the roots of the equation `(a+b+c)x^(2)-abcx` are `alpha` and `beta+(a^(-1)+b^(-1)+c^(-1))=0` then `(1)/(alpha)+(1)/(beta)` is equal to

A

243

B

100

C

`(243)/(12)`

D

`(100)/(243)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined approach. ### Step 1: Write the system of equations We have the following system of equations: 1. \( a + 2b + 3c = 6 \) (Equation 1) 2. \( 4a + 5b + 6c = 12 \) (Equation 2) 3. \( 6a + 9b = 4 \) (Equation 3) ### Step 2: Set up the determinant (Δ) We will use Cramer's rule to solve for \( a \), \( b \), and \( c \). First, we need to set up the determinant \( Δ \) using the coefficients of \( a \), \( b \), and \( c \). \[ Δ = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 6 & 9 & 0 \end{vmatrix} \] ### Step 3: Calculate the determinant (Δ) Using the determinant formula, we calculate: \[ Δ = 1 \cdot \begin{vmatrix} 5 & 6 \\ 9 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 6 \\ 6 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 6 & 9 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 5 & 6 \\ 9 & 0 \end{vmatrix} = (5 \cdot 0) - (6 \cdot 9) = -54 \) 2. \( \begin{vmatrix} 4 & 6 \\ 6 & 0 \end{vmatrix} = (4 \cdot 0) - (6 \cdot 6) = -36 \) 3. \( \begin{vmatrix} 4 & 5 \\ 6 & 9 \end{vmatrix} = (4 \cdot 9) - (5 \cdot 6) = 36 - 30 = 6 \) Now substituting back into the determinant: \[ Δ = 1 \cdot (-54) - 2 \cdot (-36) + 3 \cdot 6 = -54 + 72 + 18 = 36 \] ### Step 4: Calculate \( Δ_1 \), \( Δ_2 \), and \( Δ_3 \) Next, we calculate \( Δ_1 \), \( Δ_2 \), and \( Δ_3 \): - **For \( Δ_1 \)** (replace the first column with the RHS): \[ Δ_1 = \begin{vmatrix} 6 & 2 & 3 \\ 12 & 5 & 6 \\ 4 & 9 & 0 \end{vmatrix} \] Calculating \( Δ_1 \): \[ Δ_1 = 6 \cdot \begin{vmatrix} 5 & 6 \\ 9 & 0 \end{vmatrix} - 2 \cdot \begin{vmatrix} 12 & 6 \\ 4 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 12 & 5 \\ 4 & 9 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 5 & 6 \\ 9 & 0 \end{vmatrix} = -54 \) 2. \( \begin{vmatrix} 12 & 6 \\ 4 & 0 \end{vmatrix} = -24 \) 3. \( \begin{vmatrix} 12 & 5 \\ 4 & 9 \end{vmatrix} = 108 - 20 = 88 \) Now substituting back into \( Δ_1 \): \[ Δ_1 = 6 \cdot (-54) - 2 \cdot (-24) + 3 \cdot 88 = -324 + 48 + 264 = -12 \] - **For \( Δ_2 \)** (replace the second column with the RHS): \[ Δ_2 = \begin{vmatrix} 1 & 6 & 3 \\ 4 & 12 & 6 \\ 6 & 4 & 0 \end{vmatrix} \] Calculating \( Δ_2 \): \[ Δ_2 = 1 \cdot \begin{vmatrix} 12 & 6 \\ 4 & 0 \end{vmatrix} - 6 \cdot \begin{vmatrix} 4 & 6 \\ 6 & 0 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 12 \\ 6 & 4 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 12 & 6 \\ 4 & 0 \end{vmatrix} = -24 \) 2. \( \begin{vmatrix} 4 & 6 \\ 6 & 0 \end{vmatrix} = -36 \) 3. \( \begin{vmatrix} 4 & 12 \\ 6 & 4 \end{vmatrix} = 16 - 72 = -56 \) Now substituting back into \( Δ_2 \): \[ Δ_2 = 1 \cdot (-24) - 6 \cdot (-36) + 3 \cdot (-56) = -24 + 216 - 168 = 24 \] - **For \( Δ_3 \)** (replace the third column with the RHS): \[ Δ_3 = \begin{vmatrix} 1 & 2 & 6 \\ 4 & 5 & 12 \\ 6 & 9 & 4 \end{vmatrix} \] Calculating \( Δ_3 \): \[ Δ_3 = 1 \cdot \begin{vmatrix} 5 & 12 \\ 9 & 4 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 12 \\ 6 & 4 \end{vmatrix} + 6 \cdot \begin{vmatrix} 4 & 5 \\ 6 & 9 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 5 & 12 \\ 9 & 4 \end{vmatrix} = 20 - 108 = -88 \) 2. \( \begin{vmatrix} 4 & 12 \\ 6 & 4 \end{vmatrix} = -56 \) 3. \( \begin{vmatrix} 4 & 5 \\ 6 & 9 \end{vmatrix} = 36 - 30 = 6 \) Now substituting back into \( Δ_3 \): \[ Δ_3 = 1 \cdot (-88) - 2 \cdot (-56) + 6 \cdot 6 = -88 + 112 + 36 = 60 \] ### Step 5: Calculate \( a \), \( b \), and \( c \) Using Cramer's rule: \[ a = \frac{Δ_1}{Δ} = \frac{-12}{36} = -\frac{1}{3} \] \[ b = \frac{Δ_2}{Δ} = \frac{24}{36} = \frac{2}{3} \] \[ c = \frac{Δ_3}{Δ} = \frac{60}{36} = \frac{5}{3} \] ### Step 6: Form the quadratic equation The quadratic equation is given by: \[ (a + b + c)x^2 - abc x = 0 \] Calculating \( a + b + c \): \[ a + b + c = -\frac{1}{3} + \frac{2}{3} + \frac{5}{3} = \frac{6}{3} = 2 \] Calculating \( abc \): \[ abc = -\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{5}{3} = -\frac{10}{27} \] Thus, the quadratic equation becomes: \[ 2x^2 + \frac{10}{27}x = 0 \] Multiplying through by 27 to eliminate the fraction: \[ 54x^2 + 10x = 0 \] ### Step 7: Find the roots Factoring out \( x \): \[ x(54x + 10) = 0 \] The roots are: \[ x = 0 \quad \text{or} \quad 54x + 10 = 0 \Rightarrow x = -\frac{10}{54} = -\frac{5}{27} \] Thus, the roots are \( \alpha = 0 \) and \( \beta = -\frac{5}{27} \). ### Step 8: Calculate \( \frac{1}{\alpha} + \frac{1}{\beta} \) We need to find: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{0} + \frac{1}{-\frac{5}{27}} \] Since \( \frac{1}{0} \) is undefined, we can only consider the second term: \[ \frac{1}{\beta} = -\frac{27}{5} \] ### Final Answer Thus, the final answer is: \[ \frac{1}{\alpha} + \frac{1}{\beta} = -\frac{27}{5} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 72

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 74

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

if alpha and beta are the roots of the equation ax^(2)+bx+c=0 then the equation whose roots are (1)/(alpha+beta),(1)/(alpha)+(1)/(beta) is equal to

If alpha and beta are the roots of the equation x^(2)-x+1=0, then alpha^(2009)+beta^(2009)=-1 (b) 1( c) 2(d)-2

if alpha and beta are the roots of the equation x^(2)+x+1=0 then alpha^(28)+beta^(28)=(A)1(B)-1(C)0(D)2

Let alpha , beta be the roots of the equation (x-a) (x-b) = c , cne 0 , then find the roots of the equation (x - alpha) (x -beta) + c = 0

If b is the harmonic mean of a and c and alpha,beta are the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0

If b is the harmonic mean of a and c and alpha, beta are the roots of the equation a(b-c)x^(2) + b(c-a) x+ c(a-b)=0 , then

If alpha,beta ar the roots of the equation x^(2)-p(x+1)-c=0 then (alpha+1)(beta+1)=c b.c-1 c.1-cd .none of these

NTA MOCK TESTS-NTA JEE MOCK TEST 73-MATHEMATICS
  1. The value of (n+2).^(n)C(0).2^(n+1)-(n+1).^(n)C(1).2^(n)+(n).^(n)C(2)....

    Text Solution

    |

  2. Let a, b and c satisfy the system of equations a+2b+3c=6, 4a+5b+6c=1...

    Text Solution

    |

  3. If a ,b ,a n dc are in A.P. and one root of the equation a x^2+b c+c=0...

    Text Solution

    |

  4. If sin^6 theta + cos^6 theta+ k cos^2 2theta =1, then k=

    Text Solution

    |

  5. Let f(x)=|x| and g(x)=[x], (where [.] denotes the greatest integer fun...

    Text Solution

    |

  6. The length of the radius of the circle which touches the x - axis at t...

    Text Solution

    |

  7. Let x(1),x(2),…x(n) be n observations such that Sigmax(i)^(2)=500 and ...

    Text Solution

    |

  8. Two vertical poles AL and BM of height 25 m and 100 m respectively sta...

    Text Solution

    |

  9. A multiple - choice question has 5 options of which only one is correc...

    Text Solution

    |

  10. If the line (x-1)/(1)=(y-k)/(-2)=(z-3)/(lambda) lies in the plane 3x+4...

    Text Solution

    |

  11. If a(1)^(2)+a(2)^(2)+a(3)^(2)=1, b(1)^(2)+b(2)^(2)+b(3)^(2)=4, c(1)^(2...

    Text Solution

    |

  12. The number of ways of selecting two distinct numbers from the first 15...

    Text Solution

    |

  13. The number of possible straight lines passing through point(2,3) and f...

    Text Solution

    |

  14. If p and q are logical statements, then (p^^q)rarr(prarrq) is equivale...

    Text Solution

    |

  15. The curve having differential equation, xcosy(dy)/(dx)+siny=x and pass...

    Text Solution

    |

  16. If z(1), z(2) and z(3) are the vertices of a triangle in the argand pl...

    Text Solution

    |

  17. The range of the function f(x)=x^(2)ln(x)" for "x in [1, e]" is " [a, ...

    Text Solution

    |

  18. Consider I(1)=int(10)^(20)(lnx)/(lnx+ln(30-x))dx and I(2)=int(20)^(30)...

    Text Solution

    |

  19. The length of the intercept cut by the line 4x+4sqrt3y-1=0 between the...

    Text Solution

    |

  20. The area (in sq. units) bounded by [|x|]+[|y|]=2 in the first and thir...

    Text Solution

    |