Home
Class 12
MATHS
~(p hArr q) is...

`~(p hArr q)` is

A

`~p^^~q`

B

`~pvv~q`

C

`(p^^~q) vv (~p ^^q)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the negation of the biconditional statement \( \sim(p \leftrightarrow q) \), we can follow these steps: ### Step 1: Understand the biconditional statement The biconditional statement \( p \leftrightarrow q \) means that both \( p \) and \( q \) are either true or false together. It can be expressed in terms of implications: \[ p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \] ### Step 2: Rewrite the implications Using the implication equivalence, we can rewrite \( p \rightarrow q \) and \( q \rightarrow p \): \[ p \rightarrow q \equiv \sim p \lor q \] \[ q \rightarrow p \equiv \sim q \lor p \] Thus, we can rewrite the biconditional as: \[ p \leftrightarrow q \equiv (\sim p \lor q) \land (\sim q \lor p) \] ### Step 3: Negate the biconditional statement Now we need to find the negation of the entire biconditional statement: \[ \sim(p \leftrightarrow q) \equiv \sim((\sim p \lor q) \land (\sim q \lor p)) \] Using De Morgan's laws, we can distribute the negation: \[ \sim(A \land B) \equiv \sim A \lor \sim B \] where \( A = \sim p \lor q \) and \( B = \sim q \lor p \). Therefore: \[ \sim(p \leftrightarrow q) \equiv \sim(\sim p \lor q) \lor \sim(\sim q \lor p) \] ### Step 4: Apply De Morgan's laws to each part Now we apply De Morgan's laws to each part: 1. For \( \sim(\sim p \lor q) \): \[ \sim(\sim p \lor q) \equiv p \land \sim q \] 2. For \( \sim(\sim q \lor p) \): \[ \sim(\sim q \lor p) \equiv q \land \sim p \] ### Step 5: Combine the results Now we combine the results from the two parts: \[ \sim(p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p) \] ### Conclusion Thus, the negation of the biconditional statement \( \sim(p \leftrightarrow q) \) is: \[ (p \land \sim q) \lor (q \land \sim p) \] ### Final Answer The correct option is: **Option 3: \( p \land \sim q \lor \sim p \land q \)** ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE)|16 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-1|24 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise CHAPTER PRACTICE PROBLEMS (SUBJECTIVE)|5 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos

Similar Questions

Explore conceptually related problems

Show that ~(p harr q) -= ( p ^^ ~q) vv(~p ^^q) .

The statement (p to ~q) hArr (p ^^q) is a-

Which of the following is logcially equivalent to ~ ( p harr q) ?

STATEMENT-1 : (phArrq)=~ p hArr q and STATEMENT-2 : (phArrq) =~p hArr ~q

STATEMENT-1 : (p rArr q) hArr (~q rArr~p) and STATEMENT-2 : p rArr q is logically equivalent to ~q rArr ~p

~ ( ~p) harr p is

~ [ ~ p ^^ ( p harr q)] -=

Find the truth values of (i) ~p harr q " " (ii) ~ (p harr q)

If p is true and q is false then the truth values of (p harr q) harr (~q to ~p) and (~p vv q)^^(~q vv p) are respectively