Home
Class 12
MATHS
If two curves whose equations are ax^2 +...

If two curves whose equations are `ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0` and `a'x^2 + 2h'xy + b'y^2 + 2g' x + 2f' y + c = 0` intersect in four concyclic point., then

Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    FIITJEE|Exercise Assignment Problems (Subjective ) Level -I|16 Videos
  • CIRCLE

    FIITJEE|Exercise Assignment Problems (Subjective ) Level -II|13 Videos
  • CIRCLE

    FIITJEE|Exercise Exercise 3|6 Videos
  • AREA

    FIITJEE|Exercise Numerical Based|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

Two curves ax^(2)+2hxy+by^(2)-2gx-2fy+c=0 and a'x^(2)-2hxy+(a'+a-b)y^(2)-2g;x-2f'y+ intersect in four concyclic points A.B.C and D. If be the point ((g+g')/(a+a'),(f+f')/(a+a')) then (PA^(2))/(PD^(2))+(PB^(2))/((PD)^(2))+((PC)^(2))/((PD)^(2)) is equal to

If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - c =

The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a circle if

The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 repersents a hyperbola if

consider two curves ax^(2)+4xy+2y^(2)+x+y+5=0 and ax^(2)+6xy+5y^(2)+2x+3y+8=0 these two curves intersect at four cocyclic points then find out a

If the centre of the hyperbola whose equation is ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c = 0 " be " (alpha, beta) , then find the equation of the asymptotes.