Home
Class 12
MATHS
Let P(x)=((x-a)(x-b))/((c-a)(c-b))c^(2)+...

Let `P(x)=((x-a)(x-b))/((c-a)(c-b))c^(2)+((x-b)(x-c))/((a-b)(a-c))a^(2)+((x-c)(x-a))/((b-c)(b-a))b^(2)`
Prove that P(x) has the property that `P(y)=y^(2)` for all `y in R`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( P(y) = y^2 \) for all \( y \in \mathbb{R} \), we will analyze the polynomial \( P(x) \) given by: \[ P(x) = \frac{(x-a)(x-b)}{(c-a)(c-b)}c^2 + \frac{(x-b)(x-c)}{(a-b)(a-c)}a^2 + \frac{(x-c)(x-a)}{(b-c)(b-a)}b^2 \] ### Step 1: Evaluate \( P(a) \) Substituting \( x = a \): \[ P(a) = \frac{(a-a)(a-b)}{(c-a)(c-b)}c^2 + \frac{(a-b)(a-c)}{(a-b)(a-c)}a^2 + \frac{(a-c)(a-a)}{(b-c)(b-a)}b^2 \] The first and third terms vanish because they contain \( (a-a) \) and \( (a-a) \). Thus, we have: \[ P(a) = a^2 \] ### Step 2: Evaluate \( P(b) \) Substituting \( x = b \): \[ P(b) = \frac{(b-a)(b-b)}{(c-a)(c-b)}c^2 + \frac{(b-b)(b-c)}{(a-b)(a-c)}a^2 + \frac{(b-c)(b-a)}{(b-c)(b-a)}b^2 \] Again, the first and second terms vanish. Thus, we have: \[ P(b) = b^2 \] ### Step 3: Evaluate \( P(c) \) Substituting \( x = c \): \[ P(c) = \frac{(c-a)(c-b)}{(c-a)(c-b)}c^2 + \frac{(c-b)(c-c)}{(a-b)(a-c)}a^2 + \frac{(c-c)(c-a)}{(b-c)(b-a)}b^2 \] The second and third terms vanish. Thus, we have: \[ P(c) = c^2 \] ### Step 4: Conclude the polynomial form of \( P(x) \) Since \( P(a) = a^2 \), \( P(b) = b^2 \), and \( P(c) = c^2 \), we can conclude that \( P(x) \) is a quadratic polynomial that passes through the points \( (a, a^2) \), \( (b, b^2) \), and \( (c, c^2) \). ### Step 5: Form of \( P(x) \) Since \( P(x) \) is a quadratic polynomial and we have three points, we can express \( P(x) \) in the form: \[ P(x) = k(x^2) + mx + n \] ### Step 6: Compare coefficients Since \( P(x) \) must equal \( x^2 \) at three distinct points \( a \), \( b \), and \( c \), we can conclude that: - The coefficient of \( x^2 \) must be 1. - The coefficients of \( x \) and the constant term must be 0. Thus, we have: \[ P(x) = x^2 \] ### Conclusion Therefore, we have shown that \( P(y) = y^2 \) for all \( y \in \mathbb{R} \). ---
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|27 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 3|8 Videos

Similar Questions

Explore conceptually related problems

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then (y')/(y)=

(x^(4))/((x-a)(x-b)(x-c))=P(x)+(A)/(x-a)+(B)/(x-b)+(C)/(x-c)rArr P(x)=

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

((b^3c^(-2))/(b^(-4)c^3))^(-3)-:((b^(-1)c)/(b^2c^(-2)))^5=b^x c^y prove that x+y+6=0

Prove that: ((x^(a))/(x^(b)))^(a)-2+ab+b^(2)x((x6b)/(x^(c)))^(b)-2+bc+c^(2)x((x^(c))/(x^(a)))^(c)-2+ca+a^(2)

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then prove that (y')/(y)=(1)/(x)[(a)/(a-x)+(b)/(b-x)+(c)/(c-x)]

If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]

If (a)/(x-a) + (b)/(y-b) + (c )/(z-c)=2 find (x)/(x-a) + (y)/(y-b) + (z)/(z-c) = ?

If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c)) then the value of (x+y+z) is :