Home
Class 12
MATHS
If alpha, beta, gamma are the roots of x...

If `alpha, beta, gamma` are the roots of `x^(3)+ax+b=0`, then find the value of `alpha^(3)+beta^(3)+gamma^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^3 + \beta^3 + \gamma^3 \) where \( \alpha, \beta, \gamma \) are the roots of the polynomial \( x^3 + ax + b = 0 \), we can use the relationship between the roots and coefficients of the polynomial. ### Step-by-step Solution: 1. **Identify the Coefficients:** The given polynomial is \( x^3 + ax + b = 0 \). Here, we can identify: - \( a_0 = 1 \) (coefficient of \( x^3 \)) - \( a_1 = 0 \) (coefficient of \( x^2 \)) - \( a_2 = a \) (coefficient of \( x \)) - \( a_3 = b \) (constant term) 2. **Use Vieta's Formulas:** According to Vieta's formulas, we have: - \( \alpha + \beta + \gamma = -\frac{a_1}{a_0} = -\frac{0}{1} = 0 \) - \( \alpha \beta + \beta \gamma + \gamma \alpha = \frac{a_2}{a_0} = \frac{a}{1} = a \) - \( \alpha \beta \gamma = -\frac{a_3}{a_0} = -\frac{b}{1} = -b \) 3. **Use the Identity for Sum of Cubes:** We can use the identity: \[ \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) \] Since \( \alpha + \beta + \gamma = 0 \), the equation simplifies to: \[ \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma = 0 \] 4. **Rearranging the Equation:** Rearranging gives us: \[ \alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma \] 5. **Substituting the Value of \( \alpha\beta\gamma \):** From Vieta's, we know \( \alpha\beta\gamma = -b \). Thus: \[ \alpha^3 + \beta^3 + \gamma^3 = 3(-b) = -3b \] ### Final Answer: \[ \alpha^3 + \beta^3 + \gamma^3 = -3b \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - I|8 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - I (Fill in the blanks)|5 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise Exercise 5|2 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 3|8 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma, are the roots of 2x^(3)-x+1=0 then the value of alpha^(3)+beta^(3)+gamma^(3) is

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha,beta,gamma be the roots of ax^3+bx^2+cx+d=0 then find the value of sum 1/alpha .

If alpha,beta,gamma are the roots of x^(3)-2x^(2)+3x-4=0 then the value of alpha^(2)beta^(2)+beta^(2)gamma^(2)+gamma^(2)alpha^(2) is

If alpha,beta gamma are zeroes of cubic polynomial x^(3)+5x-2 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha,beta,gamma are the roots of he euation x^(3)+4x+1=0 ,then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)

If alpha,beta,gamma are the roots of 7x^(3)-x-2=0 . Then find the value of sum((alpha)/(beta)+(beta)/(alpha)) is