Home
Class 12
MATHS
If alpha, beta are the roots of the equa...

If `alpha, beta` are the roots of the equation `5x^(2)-5x+1=0`, then find the value of `(1)/(2)(a+b alpha+c alpha^(2)+d alpha^(3))+(1)/(2)(a+b beta+c beta^(2)+d beta^(3))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{1}{2}\left(a + b\alpha + c\alpha^2 + d\alpha^3\right) + \frac{1}{2}\left(a + b\beta + c\beta^2 + d\beta^3\right) \] where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(5x^2 - 5x + 1 = 0\). ### Step 1: Find the roots \(\alpha\) and \(\beta\) Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \(5x^2 - 5x + 1 = 0\), we have \(a = 5\), \(b = -5\), and \(c = 1\). Calculating the discriminant: \[ b^2 - 4ac = (-5)^2 - 4 \cdot 5 \cdot 1 = 25 - 20 = 5 \] Now substituting into the quadratic formula: \[ x = \frac{5 \pm \sqrt{5}}{10} = \frac{1 \pm \sqrt{5}/5}{2} \] Thus, the roots are: \[ \alpha = \frac{1 + \sqrt{5}/5}{2}, \quad \beta = \frac{1 - \sqrt{5}/5}{2} \] ### Step 2: Use Vieta's formulas From Vieta's formulas, we know: \[ \alpha + \beta = \frac{-(-5)}{5} = 1 \] \[ \alpha \beta = \frac{1}{5} \] ### Step 3: Simplify the expression We can factor out \(\frac{1}{2}\): \[ \frac{1}{2}\left(2a + b(\alpha + \beta) + c(\alpha^2 + \beta^2) + d(\alpha^3 + \beta^3)\right) \] Substituting \(\alpha + \beta = 1\): \[ = \frac{1}{2}\left(2a + b \cdot 1 + c(\alpha^2 + \beta^2) + d(\alpha^3 + \beta^3)\right) \] ### Step 4: Calculate \(\alpha^2 + \beta^2\) Using the identity: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 1^2 - 2 \cdot \frac{1}{5} = 1 - \frac{2}{5} = \frac{3}{5} \] ### Step 5: Calculate \(\alpha^3 + \beta^3\) Using the identity: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = 1\left(\frac{3}{5} - \frac{1}{5}\right) = \frac{2}{5} \] ### Step 6: Substitute back into the expression Now substituting back into our expression: \[ = \frac{1}{2}\left(2a + b + c \cdot \frac{3}{5} + d \cdot \frac{2}{5}\right) \] ### Step 7: Final expression Rearranging gives us: \[ = \frac{1}{2}\left(2a + b + \frac{3c}{5} + \frac{2d}{5}\right) \] ### Step 8: Final result Thus, the final value of the expression is: \[ \frac{1}{2}\left(2a + b + \frac{3c}{5} + \frac{2d}{5}\right) \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - II|28 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I|50 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - I|8 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 3|8 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equation 2x^2+5x+3=0 , then find the value of beta/alpha + alpha/beta .

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are the roots of equation 2x^(2)-3x+5=0 then find the value of alpha^(2)beta+beta^(2)alpha

If alpha,beta are roots of the equation x^(2)-a(xx+1)-c=0, then write the value of (1+alpha)(1+beta)

If alpha and beta are the roots of equation 6x^(2)+x-2=0 , find the value of (alpha)/(beta)+(beta)/(alpha) :

If alpha , beta roots of the equations x^(2) - 5x + 6 = 0 , find the value of alpha^(2) - beta^(2) .