Home
Class 12
MATHS
If (x^(2)+ax+3)/(x^(2)+x+a), takes all r...

If `(x^(2)+ax+3)/(x^(2)+x+a)`, takes all real values for possible real values of x, then

A

`a^(3)-9a+12 le 0`

B

`4a^(3)+39 lt 0`

C

`a^3 -9a lt 1//4`

D

`a ge 1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where the expression \(\frac{x^2 + ax + 3}{x^2 + x + a}\) takes all real values for possible real values of \(x\), we can follow these steps: ### Step 1: Set up the equation Let \(y = \frac{x^2 + ax + 3}{x^2 + x + a}\). ### Step 2: Cross-multiply Cross-multiplying gives us: \[ y(x^2 + x + a) = x^2 + ax + 3 \] This simplifies to: \[ yx^2 + yx + ya = x^2 + ax + 3 \] ### Step 3: Rearrange the equation Rearranging the equation leads to: \[ yx^2 - x^2 + yx - ax + ya - 3 = 0 \] This can be rewritten as: \[ (y - 1)x^2 + (y - a)x + (ya - 3) = 0 \] ### Step 4: Identify coefficients From the quadratic equation \(Ax^2 + Bx + C = 0\), we have: - \(A = y - 1\) - \(B = y - a\) - \(C = ya - 3\) ### Step 5: Condition for real values For the quadratic equation to have real solutions for all values of \(x\), the discriminant must be non-negative: \[ D = B^2 - 4AC \geq 0 \] Substituting the coefficients: \[ (y - a)^2 - 4(y - 1)(ya - 3) \geq 0 \] ### Step 6: Expand the discriminant Expanding the discriminant: \[ (y - a)^2 - 4[(y - 1)(ya - 3)] \] This expands to: \[ (y - a)^2 - 4(y^2a - 3y - ya + 3) \geq 0 \] ### Step 7: Simplify the discriminant Simplifying further, we get: \[ (y - a)^2 - 4y^2a + 12y + 4a - 12 \geq 0 \] ### Step 8: Analyze the quadratic in \(y\) This is a quadratic in \(y\). For it to be non-negative for all \(y\), the coefficient of \(y^2\) must be non-positive, and the discriminant must be non-positive. ### Step 9: Coefficients conditions 1. Coefficient of \(y^2\) must be \(1 - 4a \geq 0\) which gives \(a \leq \frac{1}{4}\). 2. The discriminant of the quadratic must also be less than or equal to zero. ### Step 10: Solve the cubic inequality The cubic inequality \(a^3 - 9a + 12 \leq 0\) must be solved. ### Conclusion The conditions derived from the analysis are: 1. \(a \leq \frac{1}{4}\) 2. \(a^3 - 9a + 12 \leq 0\)
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise COMPREHENSIONS - I|3 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise COMPREHENSIONS - II|3 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I|50 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 3|8 Videos

Similar Questions

Explore conceptually related problems

if (x^(2)-x)/(1-ax) attains all real values (x in R) then possible value of a are

If (x^(2)-x)/(1-ax) attains all real values (x in R) then possible value of a are (A) (-oo , 1) (B) (1, oo) (C) [1, oo) (D)(1, 2)

If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

If x is real then (x^(2)-x+c)/(x^(2)+x+2c) can take all real values if

Let f(x)=ax^(2)+bx+a,b,c in R. If f(x) takes real values for real values of x and non- real values for non-real values of x ,then a=0 b.b=0 c.c=0 d.nothing can be said about a,b,c.

If y = x^3 - ax^2 + 48x + 7 is an increasing function for all real values of x, then a lies in

FIITJEE-QUADRATIC EQUATION & EXPRESSION -ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II
  1. Let f(x) is a quadratic expression with positive integral coefficient...

    Text Solution

    |

  2. If 0 lt c lt b lt a and the roots alpha, beta the equation cx^(2)+bx+a...

    Text Solution

    |

  3. If a lt 0, then the value of x satisfying x ^(2)-2a|x-a| -3a ^(2)=0 i...

    Text Solution

    |

  4. If a,b,c are rational numbers (a gt b gt c gt 0) and quadratic equatio...

    Text Solution

    |

  5. The value of 'a' for which the quadratic expression ax^(2)+|2a-3|x-6 i...

    Text Solution

    |

  6. If p and q are odd integers, then the equation x^2+2x+2q=0 (A) has no ...

    Text Solution

    |

  7. pi^e/(x-e) + e^pi/(x-pi) + (pi^pi+e^e)/(x-pi-e)=0 has

    Text Solution

    |

  8. If ax^(2)+bx+c=0 and cx^(2)+bx+a=0 (a, b, c in R) have a common non - ...

    Text Solution

    |

  9. The equation (x^(2)-6x+8)+lambda (x^(2)-4x+3)=0, lambda in R has

    Text Solution

    |

  10. If the equation cx^(2)+bx-2a=0 has no real roots and a lt (b+c)/(2) th...

    Text Solution

    |

  11. If a, b, c are odd integers, then the roots of ax^(2)+bx+c=0, if real,...

    Text Solution

    |

  12. If the equation whose roots are the squares of the roots of the cubic ...

    Text Solution

    |

  13. If coefficients of the equation ax^2 + bx + c = 0 , a!=0 are real and...

    Text Solution

    |

  14. If f(x) = 0 is a polynomial whose coefficients all pm 1 and whose root...

    Text Solution

    |

  15. If a,b,c,d in R and all the three roots of az^3 + bz^2 + cZ + d=0 ha...

    Text Solution

    |

  16. The equation a(8)x^(8)+a(7)x(8)^(7)+a(6)x^(6)+…+a(0)=0 has all its po...

    Text Solution

    |

  17. Which of the following is correct for the quadratic equation x^(2)+2(a...

    Text Solution

    |

  18. If (x^(2)+ax+3)/(x^(2)+x+a), takes all real values for possible real v...

    Text Solution

    |

  19. If each pair of the following equations x^2+px+qr=0, x^2+qx+pr=0 and x...

    Text Solution

    |

  20. If a, b, c, d are four non - zero real numbers such that (d+a-b)^(2)+(...

    Text Solution

    |