Home
Class 12
MATHS
If S is the set of all real x such that ...

If `S` is the set of all real `x` such that `(2x-1)(x^(3)+2x^(2)+x) gt 0`, then `S` contains which of the following intervals :

A

`((-3)/(2),(1)/(2))`

B

`((-3)/(2),(-1)/(4))`

C

`((-1)/(4),(1)/(2))`

D

`((1)/(2),3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((2x-1)(x^3 + 2x^2 + x) > 0\), we will follow these steps: ### Step 1: Factor the expression We start with the expression: \[ (2x-1)(x^3 + 2x^2 + x) \] We can factor \(x^3 + 2x^2 + x\) by taking \(x\) common: \[ x(x^2 + 2x + 1) = x(x + 1)^2 \] Thus, we can rewrite the original expression as: \[ (2x - 1)(x(x + 1)^2) > 0 \] ### Step 2: Identify the critical points Next, we find the critical points by setting each factor to zero: 1. \(2x - 1 = 0 \Rightarrow x = \frac{1}{2}\) 2. \(x = 0\) 3. \(x + 1 = 0 \Rightarrow x = -1\) The critical points are \(x = -1\), \(x = 0\), and \(x = \frac{1}{2}\). ### Step 3: Create a number line We will place the critical points on a number line: \[ -\infty \quad -1 \quad 0 \quad \frac{1}{2} \quad +\infty \] ### Step 4: Test intervals We will test the sign of the expression in each of the intervals defined by the critical points: 1. **Interval \((- \infty, -1)\)**: Choose \(x = -2\) \[ (2(-2) - 1)(-2(-2 + 1)^2) = (-4 - 1)(-2(1)) = (-5)(-2) = 10 > 0 \] So, this interval is valid. 2. **Interval \((-1, 0)\)**: Choose \(x = -0.5\) \[ (2(-0.5) - 1)(-0.5(-0.5 + 1)^2) = (-1 - 1)(-0.5(0.25)) = (-2)(-0.125) = 0.25 > 0 \] So, this interval is valid. 3. **Interval \((0, \frac{1}{2})\)**: Choose \(x = 0.25\) \[ (2(0.25) - 1)(0.25(0.25 + 1)^2) = (0.5 - 1)(0.25(1.5625)) = (-0.5)(0.390625) < 0 \] So, this interval is not valid. 4. **Interval \((\frac{1}{2}, +\infty)\)**: Choose \(x = 1\) \[ (2(1) - 1)(1(1 + 1)^2) = (2 - 1)(1(4)) = (1)(4) = 4 > 0 \] So, this interval is valid. ### Step 5: Combine valid intervals The valid intervals for which the expression is greater than zero are: \[ (-\infty, -1) \cup (-1, 0) \cup \left(\frac{1}{2}, +\infty\right) \] ### Conclusion Thus, the set \(S\) contains the intervals: - \((- \infty, -1)\) - \((-1, 0)\) - \((\frac{1}{2}, +\infty)\)
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level II ( NUMERIAL BASED )|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|5 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level I|20 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If S is the set of all real x such that (2x-1)/(2x^(3)+3x^(2)+x) is positive then S cantains

Find all the real values of x such that (2x-1)/(2x^3+3x^2+x)gt0

If denote the set of all real x for which (x^(2)+x+1)^(x) lt 1 , then S =

If S is the set of all real numbers x for which >0(2x-1)/(2x^(3)+3x^(2)+x) and P is the subset of S ,

Find the set of all s for which (2x)/(2x^(2)+5x+2) gt (1)/(x+10