Home
Class 12
MATHS
f(x)=cos(logx), then...

`f(x)=cos(logx)`, then

A

`f(x)` is defined in `x in (0,e]`

B

`f(x)` is defined in `x in ((1)/(e ),e]`

C

`f(x)f(y)-(1)/(2)(f((x)/(y))+f(xy))=0`

D

`f(x)f(y)+(1)/(2)[f((x)/(y))+f(xy)]=1`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level II ( NUMERIAL BASED )|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|5 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level I|20 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

cos(2logx)

If f(x)=log(logx)," then "f'(e)=

If y=f((2x+3)/(3-2x)) and f(x)=sin(logx) , then (dy)/(dx)=

If f(x)=log_x(log_ex) then f'(e) =________

if f(x)=cos(x) then find f'(x)=-6x cos^(2)(x^(2))sin(x)

x^(x)(1+logx)

If f(x)=(log)_x(logx) , then f'(x) at x=e is equal to......

Assertion (A) : If f(x)=logx," then "f(x)gt0" for all "xgt0 . Reaosn (R) : f(x)=logx, is defined for all xgt0