Home
Class 12
MATHS
Statement -I:X={8n+1:n inN},then XnnY=Y,...

Statement -I:`X={8n+1:n inN},then XnnY=Y, Y={(2n+1)^2:n in N}` because statement -II:x is a subset of y

A

Statement -1 is True, Statement -2 is True , Statement -2 is a correct explanation for Statement-1

B

Statement -1 is True, Statement -2 is True , Statement -2 is NOT a correct explanation for Statement-1

C

Statement -1 is True, Statement -2 is False.

D

Statement-1 is False, Statement -2 is True.

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level II ( NUMERIAL BASED )|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise COMPREHENSIONS|5 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Assigment problem ( OBJECTIVE )level I|20 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Statement-I: X={8n+1:n in N}, then X nn Y=Y,Y={(2n+1)^(2):n in N} because statement -II:x is a subset of y

If X={8^(n)-7n-1,n in N} and Y={49(n-1);n in N}, then prove that X is a subset of Y

If X={8^(n)-7n-1:n in N) and Y={49(n-1): n in N}, then

If X={8^n-7n-1:n epsilon N} and Y={49(n-1):n epsilon N} , then

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X = {4 ^(n)-2n-1: n in N} and Y={9(n -1) : n in N}, then Xnn Y=

if X={8^n-7n-1 | n in N} and Y={49n-49| n in N}.Then show that X=Y