Home
Class 11
MATHS
If the lines a x+2y+1=0,b x+3y+1=0a n dc...

If the lines `a x+2y+1=0,b x+3y+1=0a n dc x+4y+1=0` are concurrent, then `a ,b ,c` are in a. A.P. b. G.P. c. H.P. d. none of these

Text Solution

Verified by Experts

The correct Answer is:
False

Given lines are
`ax+2y+1=0`
`bx+3y+1=0`
From Eq. (i), on putting `y=(-ax-1)/(2)` in Eq. (ii), we get
`bx-(3)/(2)(ax+1)+1=0`
`rArr 2bx-3ax-3+2=0`
`rArr x(2b-3a)=1rArrx=(1)/(2b-3a)`
Now, using `x=(1)/(2b-3a)` in Eq. (i), we get
`(a)/(2b-3a)+2y+1=0`
`rArr 2y=-[(a+2b-3a)/(2b-3a)]`
`rArr 2y=(-(-2b-2a))/(2b-3a)`
`rArr y=((a-b))/(2b-3a)`
So, the point of intersection is `((1)/(2b-3a),(a-b)/(2b-3a))`
Since, this point lies on `cx+4y+1=0`, then
`(c)/(2b-3a)+(4(a-b))/(2b-3a)+1=0`
`rArr c+4a-4b+2b-3a=0`
`rArr -2b+a+c=0rArr2b=a+c`
Hence, the given statement is false.
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise Fillers|6 Videos
  • STATISTICS

    NCERT EXEMPLAR|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos

Similar Questions

Explore conceptually related problems

I the lines a x+12 y+1=0,\ b x+13 y+1=0 and c x+14 y+1=0 are concurrent, then a , b , c are in a. H.P. b. G.P. c. A.P. d. none of these

If the lines ax+2y+1=0,bx+3y+1=0 and cx+4y+1=0 are concurrent,then a,b,c are in a.A.P.b.G.P.c.H.P. d.none of these

If the lines ax+2y+1=0,bx+3y+1=0 and cx+4y+1=0 are concurrent,then a,b,c are in A.P.( b) G.P.( c) H.P.(d) None of these

If the lines 2x - ay + 1 = 0, 3x – by + 1 = 0, 4x-cy+1 =0 concurrent, then a, b, c are in (A) A.P. (B) G.P. (C) H.P. (D) A.G.P

if the lines x + 2ay + a = 0, x + 3by + b = 0 and x + 4cy + c = 0 are concurrent, then a, b, c are in: (1) A.P.(2) G.P.(3) H.P.(4) A.G.P.

If the lines x+a y+a=0,\ b x+y+b=0\ a n d\ c x+c y+1=0 are concurrent, then write the value of 2a b c-a b-b c-c adot

If a,b,c are in A.P.the (a)/(bc),(1)/(c),(2)/(b) will be in a. A.P b.G.P.c.H.P.d.none of these

If x,y,z are in A.P. then : yz,zx,xy are in (a) A.P (b) G.P (c) H.P (d) no definite sequence

If a,b,c are in A.P ,then 3^(a),3^(b),3^(c) shall be in (A) A.P (B) G.P (C) H.P (D) None of these