Home
Class 11
MATHS
Show that the point (x ,y) given by x=(2...

Show that the point `(x ,y)` given by `x=(2a t)/(1+t^2) and y=((1-t^2)/(1+t^2))` lies on a circle for all real values of `t` such that `-1lt=tlt=1,` where a is any given real number.

Text Solution

Verified by Experts

Given points are `x=(2at)/(1+t^(2))` and `y=(a(1-t^(2)))/(1+t^(2))`
`because x^(2)+y^(2)=(4a^(2)t^(2))/((1+t^(2))^(2))+(a^(2)(1-t^(2)))/(1+t^(2))`
`rArr1/(a^(2)(x^(2)+y^(2)))=(4t^(2)+1+t^(4)-2t^(2))/((1+t^(2))^(2))`
`rArr1/(a^(2))(x^(2)+y^(2))=(t^(2)+2t^(2)+1)/((1+t^(2))^(2))`
`rArr 1/(a^(2))(x^(2)+y^(2))=((1+t^(2))^(2))/((1+t^(2))^(2))`
`rArr x^(2)+y^(2)=a^(2)`, which is a required circle.
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Long answer|10 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise True/False|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos

Similar Questions

Explore conceptually related problems

Show that the point (x,y) given by x=(2at)/(1+t^(2)) and y=((1-t^(2))/(1+t^(2))) lies on a circle for all real values of t such that -1<=t<=1 where a is any given real number.

Show that the point (x,y) given y x = ( 2at)/( 1+t^(2)) and y = (a( 1-t^(2)))/( 1+t^(2)) lies on a circle..

Find dy/dx if x=(2at)/(1+t^2) , y=(a(1-t^2))/(1+t^2)

A function y=f(x) is given by x=(1)/(1+t^(2)) and y=(1)/(t(1+t^(2))) for all t>0 then f is

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then "(dy)/(dx)=

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2)), then find (dy)/(dx) at t=2

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=