Home
Class 11
MATHS
If the line l x+m y-1=0 touches the circ...

If the line `l x+m y-1=0` touches the circle `x^2+y^2=a^2` , then prove that `(l , m)` lies on a circle.

Text Solution

Verified by Experts

True
Given circle is `x^(2)+y^(2)=a^(2)`
`therefore` Radius of circle=a and centre =(0,0)

`therefore` Distance from point (l,m) and centre is `sqrt((0-e)^(2)+(0-m)^(2))`=a
`rArr l^(2)+m^(2)=a^(2)`
So, l,m lie on the circle.
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Fillers|6 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Objective type|13 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR|Exercise Long answer|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos

Similar Questions

Explore conceptually related problems

If the line lx+my-1=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l,m) lies on a circle.

If 1x+my-1=0 touches the circle x^(2)+y^(2)=a^(2) then the point (1,m) lies on the circle

If the line lx+my+n=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l^(2)+m^(2))^(2)=n^(2)

If the line px+qy=1 touches the circle x^(2)+y^(2)=r^(2), prove that the point (p,q) lies on the circle x^(2)+y^(2)=r^(-2)

If lx+my=1 touches the circle x^(2)+y^(2)=a^(2) , prove that the point (l,m) lies on the circle x^(2)+y^(2)=a^(-2)

If the line hx+ky=(1)/(a) touches the circle x^(2)+y^(2)=a^(2) then the locus of (h,k) is circle of radius

If the line 2x-y+1=0 touches the circle at the point (2,5) and the centre of the circle lies in the line x+y-9=0. Find the equation of the circle.

A line L is perpendicular to the line 3x-4y-7=0 and touches the circle x^(2)+y^(2)-2x-4y-4=0 , the y -intercept of the line L can be: