Home
Class 12
MATHS
Show that sin^(-1)'5/13+cos^(-1)'3/5=tan...

Show that `sin^(-1)'5/13+cos^(-1)'3/5=tan^(-1)'63/16`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \), we can follow these steps: ### Step 1: Assign Variables Let: \[ x = \sin^{-1}\left(\frac{5}{13}\right) \] \[ y = \cos^{-1}\left(\frac{3}{5}\right) \] ### Step 2: Find \( \sin x \) and \( \cos y \) From the definitions of inverse trigonometric functions, we have: \[ \sin x = \frac{5}{13} \] \[ \cos y = \frac{3}{5} \] ### Step 3: Find \( \cos x \) and \( \sin y \) Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): 1. For \( \cos x \): \[ \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{5}{13}\right)^2 = 1 - \frac{25}{169} = \frac{144}{169} \] \[ \cos x = \sqrt{\frac{144}{169}} = \frac{12}{13} \] 2. For \( \sin y \): \[ \sin^2 y = 1 - \cos^2 y = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \sin y = \sqrt{\frac{16}{25}} = \frac{4}{5} \] ### Step 4: Calculate \( \tan x \) and \( \tan y \) Now, we can find: \[ \tan x = \frac{\sin x}{\cos x} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] \[ \tan y = \frac{\sin y}{\cos y} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] ### Step 5: Use the Formula for \( \tan(x + y) \) Using the formula for the tangent of a sum: \[ \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \] Substituting the values: \[ \tan(x + y) = \frac{\frac{5}{12} + \frac{4}{3}}{1 - \left(\frac{5}{12} \cdot \frac{4}{3}\right)} \] ### Step 6: Simplify the Expression 1. Find a common denominator for the numerator: \[ \frac{4}{3} = \frac{16}{12} \] Thus, \[ \tan(x + y) = \frac{\frac{5}{12} + \frac{16}{12}}{1 - \frac{20}{36}} = \frac{\frac{21}{12}}{1 - \frac{5}{9}} \] 2. Simplify the denominator: \[ 1 - \frac{5}{9} = \frac{4}{9} \] 3. Now, substituting back: \[ \tan(x + y) = \frac{\frac{21}{12}}{\frac{4}{9}} = \frac{21 \cdot 9}{12 \cdot 4} = \frac{189}{48} = \frac{63}{16} \] ### Step 7: Conclusion Thus, we have: \[ \tan(x + y) = \frac{63}{16} \] Therefore, we can conclude: \[ x + y = \tan^{-1}\left(\frac{63}{16}\right) \] This implies: \[ \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \] Hence proved.

To prove that \( \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \), we can follow these steps: ### Step 1: Assign Variables Let: \[ x = \sin^{-1}\left(\frac{5}{13}\right) \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR|Exercise Integrals|62 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos

Similar Questions

Explore conceptually related problems

Show that (sin^(-1)(12))/(13)+(cos^(-1)4)/(5)+(tan^(-1)(63))/(16)=pi

Prove that: sin^(-1)(12)/(13)+cos^(-1)(4)/(5)+tan^(-1)(63)/(16)=pi

sin^(-1)(5/13)+tan^(-1)(12/5)=

sin[cos^(-1)(3/5)+tan^(-1)2]=

tan^(-1)((5)/(13))+cos^(-1)((3)/(5))=

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Prove that: sin^(-1)((5)/(13))+cos^(-1)((4)/(5))=(1)/(2)sin^(-1)((3696)/(4225))

Prove that sin^(-1). 3/5 +cos^(-1) . 12/13 = sin^(-1). 56/65

Prove the following results: tan((sin^(-1)(15))/(13)+(cos^(-1)3)/(5))=(63)/(16) (ii) sin((cos^(-1)3)/(5)+(sin^(-1)5)/(13))=(63)/(65)

NCERT EXEMPLAR-INVERSE TRIGONOMETRIC FUNCTIONS-Inverse Trigonometric Functions
  1. Simplify each of the following: cos^(-1)(3/5cosx+4/5sinx) , where -(3p...

    Text Solution

    |

  2. Prove that sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)

    Text Solution

    |

  3. Show that sin^(-1)'5/13+cos^(-1)'3/5=tan^(-1)'63/16.

    Text Solution

    |

  4. Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

    Text Solution

    |

  5. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  6. Show that: tan(1/2sin^(-1)3/4)=(4\ sqrt(-7))/3

    Text Solution

    |

  7. If a1, a2,a3, ,an is an A.P. with common difference d , then prove th...

    Text Solution

    |

  8. Which of the following of the principal value branch of cos^(-1)...

    Text Solution

    |

  9. Which of the following is the principal value branch of cosec^(-1)x ?

    Text Solution

    |

  10. If 3tan^(-1)x +cot^(-1)x=pi, then x equals to

    Text Solution

    |

  11. The value of sin^(-1)(cos(33pi)/5) is (3pi)/5 (b) pi/(10) (c) pi/(10) ...

    Text Solution

    |

  12. The domin of the function cos^(-1) (2x-1) is

    Text Solution

    |

  13. The domain of the function defined by f(x) = sin^(-1)sqrt(x-1) is

    Text Solution

    |

  14. If cos(sin^(-1)'2/5 + cos^(-1)x) = 0, then x is equal to

    Text Solution

    |

  15. The value of sin[2tan^(-1)(0.75)] is

    Text Solution

    |

  16. The value of cos^(-1)(cos ((3pi)/(2))) is

    Text Solution

    |

  17. The value of 2sec^(-1) + 2 sin^(-1)(1/2) is

    Text Solution

    |

  18. If tan^(-1) x + tan^(-1) y = (4pi)/(5), then cot^(-1) x + cot^(-1) y ...

    Text Solution

    |

  19. If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((...

    Text Solution

    |

  20. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |