Home
Class 12
MATHS
If 3tan^(-1)x +cot^(-1)x=pi, then x equa...

If `3tan^(-1)x +cot^(-1)x=pi`, then x equals to

A

0

B

1

C

`-1`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3\tan^{-1}x + \cot^{-1}x = \pi \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 3\tan^{-1}x + \cot^{-1}x = \pi \] ### Step 2: Use the identity for cotangent Recall that: \[ \cot^{-1}x = \frac{\pi}{2} - \tan^{-1}x \] Using this identity, we can rewrite the equation: \[ 3\tan^{-1}x + \left(\frac{\pi}{2} - \tan^{-1}x\right) = \pi \] ### Step 3: Simplify the equation Now, simplify the equation: \[ 3\tan^{-1}x - \tan^{-1}x + \frac{\pi}{2} = \pi \] This simplifies to: \[ 2\tan^{-1}x + \frac{\pi}{2} = \pi \] ### Step 4: Isolate the term with \(\tan^{-1}x\) Subtract \(\frac{\pi}{2}\) from both sides: \[ 2\tan^{-1}x = \pi - \frac{\pi}{2} \] This simplifies to: \[ 2\tan^{-1}x = \frac{\pi}{2} \] ### Step 5: Divide by 2 Now, divide both sides by 2: \[ \tan^{-1}x = \frac{\pi}{4} \] ### Step 6: Solve for \(x\) Taking the tangent of both sides gives: \[ x = \tan\left(\frac{\pi}{4}\right) \] Since \(\tan\left(\frac{\pi}{4}\right) = 1\), we find: \[ x = 1 \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{1} \] ---

To solve the equation \( 3\tan^{-1}x + \cot^{-1}x = \pi \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 3\tan^{-1}x + \cot^{-1}x = \pi \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR|Exercise Integrals|62 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

cot(tan^(-1)x+cot^(-1)x)

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

If: tan^(-1)x + 2cot^(-1)x = (2pi)/3 , then: x=

If tan^(-1)x+2cot^(-1)x=(2 pi)/(3), then x, is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3)(d)sqrt(2)

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

If tan^(-1)(-sqrt(3))+cot^(-1)x=pi , then the value of x is :

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

NCERT EXEMPLAR-INVERSE TRIGONOMETRIC FUNCTIONS-Inverse Trigonometric Functions
  1. Which of the following of the principal value branch of cos^(-1)...

    Text Solution

    |

  2. Which of the following is the principal value branch of cosec^(-1)x ?

    Text Solution

    |

  3. If 3tan^(-1)x +cot^(-1)x=pi, then x equals to

    Text Solution

    |

  4. The value of sin^(-1)(cos(33pi)/5) is (3pi)/5 (b) pi/(10) (c) pi/(10) ...

    Text Solution

    |

  5. The domin of the function cos^(-1) (2x-1) is

    Text Solution

    |

  6. The domain of the function defined by f(x) = sin^(-1)sqrt(x-1) is

    Text Solution

    |

  7. If cos(sin^(-1)'2/5 + cos^(-1)x) = 0, then x is equal to

    Text Solution

    |

  8. The value of sin[2tan^(-1)(0.75)] is

    Text Solution

    |

  9. The value of cos^(-1)(cos ((3pi)/(2))) is

    Text Solution

    |

  10. The value of 2sec^(-1) + 2 sin^(-1)(1/2) is

    Text Solution

    |

  11. If tan^(-1) x + tan^(-1) y = (4pi)/(5), then cot^(-1) x + cot^(-1) y ...

    Text Solution

    |

  12. If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((...

    Text Solution

    |

  13. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  14. The value of tan(1/2 cos^(-1)'2/(sqrt(5))) is

    Text Solution

    |

  15. If |x| le 1, then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  16. If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi, then alpha (...

    Text Solution

    |

  17. The number of real solutions of the equation sqrt(1+cos2x) = sqrt(2)...

    Text Solution

    |

  18. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  19. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  20. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |