Home
Class 12
MATHS
The domin of the function cos^(-1) (2...

The domin of the function `cos^(-1) (2x-1)` is

A

`[0,1]`

B

`[-1,1]`

C

`(-1,1)`

D

`[0,pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( \cos^{-1}(2x - 1) \), we need to ensure that the expression inside the inverse cosine function lies within the acceptable range for the cosine function, which is between -1 and 1, inclusive. ### Step-by-step Solution: 1. **Set Up the Inequality**: We start by setting up the inequality based on the range of the cosine function: \[ -1 \leq 2x - 1 \leq 1 \] 2. **Split the Inequality**: We can split this compound inequality into two separate inequalities: \[ 2x - 1 \geq -1 \quad \text{and} \quad 2x - 1 \leq 1 \] 3. **Solve the First Inequality**: For the first inequality \( 2x - 1 \geq -1 \): \[ 2x \geq 0 \implies x \geq 0 \] 4. **Solve the Second Inequality**: For the second inequality \( 2x - 1 \leq 1 \): \[ 2x \leq 2 \implies x \leq 1 \] 5. **Combine the Results**: Combining the results from the two inequalities, we find: \[ 0 \leq x \leq 1 \] 6. **Express the Domain**: Therefore, the domain of the function \( \cos^{-1}(2x - 1) \) is: \[ [0, 1] \] ### Final Answer: The domain of the function \( \cos^{-1}(2x - 1) \) is \( [0, 1] \).

To find the domain of the function \( \cos^{-1}(2x - 1) \), we need to ensure that the expression inside the inverse cosine function lies within the acceptable range for the cosine function, which is between -1 and 1, inclusive. ### Step-by-step Solution: 1. **Set Up the Inequality**: We start by setting up the inequality based on the range of the cosine function: \[ -1 \leq 2x - 1 \leq 1 ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR|Exercise Integrals|62 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x) = cos ^(-1)((2-x)/(4)) is

The domain of the function f(x) = sin^(-1) ((2-|x|)/(4)) + cos^(-1) ((2-|x|)/(4)) + tan^(-1) ((2-|x|)/(4)) is

The domain of the function f(x)=cos^(-1)[log_(2)(x/2)] is

The domain of the function sqrt(cos (tan^(-1).(1)/((1-|1-|x||))) is

The domain of the function f(x)=sqrt(cos^(-1)((1-|x|)/(2))) is

The domain of the function f(x) = sin^(-1)((3x^(2) + x-1)/((x-1)^(2))) + cos^(-1)((x-1)/(x+1)) is :

Find the domain of the function: f(x)=cos^(-1)(1+3x+2x^(2))

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is

The domain of the function f(x)=sqrt((1)/((x|-1)cos^(-1)(2x+1)tan3x)) is

NCERT EXEMPLAR-INVERSE TRIGONOMETRIC FUNCTIONS-Inverse Trigonometric Functions
  1. If 3tan^(-1)x +cot^(-1)x=pi, then x equals to

    Text Solution

    |

  2. The value of sin^(-1)(cos(33pi)/5) is (3pi)/5 (b) pi/(10) (c) pi/(10) ...

    Text Solution

    |

  3. The domin of the function cos^(-1) (2x-1) is

    Text Solution

    |

  4. The domain of the function defined by f(x) = sin^(-1)sqrt(x-1) is

    Text Solution

    |

  5. If cos(sin^(-1)'2/5 + cos^(-1)x) = 0, then x is equal to

    Text Solution

    |

  6. The value of sin[2tan^(-1)(0.75)] is

    Text Solution

    |

  7. The value of cos^(-1)(cos ((3pi)/(2))) is

    Text Solution

    |

  8. The value of 2sec^(-1) + 2 sin^(-1)(1/2) is

    Text Solution

    |

  9. If tan^(-1) x + tan^(-1) y = (4pi)/(5), then cot^(-1) x + cot^(-1) y ...

    Text Solution

    |

  10. If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((...

    Text Solution

    |

  11. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  12. The value of tan(1/2 cos^(-1)'2/(sqrt(5))) is

    Text Solution

    |

  13. If |x| le 1, then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  14. If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi, then alpha (...

    Text Solution

    |

  15. The number of real solutions of the equation sqrt(1+cos2x) = sqrt(2)...

    Text Solution

    |

  16. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  17. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  18. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  19. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  20. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |