Home
Class 12
MATHS
If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((...

If `sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2)))`, where `a, x in]0,1[`, then the value of x is

A

0

B

`a/2`

C

a

D

`(2a)/(1-a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right), \] where \( a, x \in (0, 1) \), we can follow these steps: ### Step 1: Substitute \( a \) with \( \tan \theta \) Let \( a = \tan \theta \). Then we have: \[ \sin^{-1}\left(\frac{2\tan \theta}{1+\tan^2 \theta}\right) + \cos^{-1}\left(\frac{1-\tan^2 \theta}{1+\tan^2 \theta}\right) \] ### Step 2: Use trigonometric identities Using the identities: \[ \sin(2\theta) = \frac{2\tan \theta}{1+\tan^2 \theta} \quad \text{and} \quad \cos(2\theta) = \frac{1-\tan^2 \theta}{1+\tan^2 \theta}, \] we can rewrite the equation as: \[ \sin^{-1}(\sin(2\theta)) + \cos^{-1}(\cos(2\theta)). \] ### Step 3: Simplify the left-hand side Since \( \sin^{-1}(\sin(2\theta)) + \cos^{-1}(\cos(2\theta)) = 2\theta \) (for \( 0 < 2\theta < \frac{\pi}{2} \)), we have: \[ 2\theta = \tan^{-1}\left(\frac{2x}{1-x^2}\right). \] ### Step 4: Use the double angle formula for tangent Using the double angle formula for tangent: \[ \tan(2\theta) = \frac{2\tan \theta}{1-\tan^2 \theta}, \] we can equate: \[ \tan(2\theta) = \frac{2x}{1-x^2}. \] ### Step 5: Substitute \( \tan \theta \) Since \( a = \tan \theta \), we can substitute \( \tan \theta \) back: \[ \tan(2\theta) = \frac{2a}{1-a^2}. \] ### Step 6: Set the equations equal Now we have: \[ \frac{2a}{1-a^2} = \frac{2x}{1-x^2}. \] ### Step 7: Cross-multiply Cross-multiplying gives: \[ 2a(1-x^2) = 2x(1-a^2). \] ### Step 8: Simplify the equation This simplifies to: \[ 2a - 2ax^2 = 2x - 2ax^2. \] ### Step 9: Rearranging terms Rearranging gives: \[ 2a = 2x, \] which leads to: \[ x = a. \] ### Step 10: Substitute back to find \( x \) Since \( a = \tan \theta \) and \( a \in (0, 1) \), we conclude that: \[ x = \frac{2a}{1-a^2}. \] Thus, the value of \( x \) is: \[ \boxed{\frac{2a}{1-a^2}}. \]

To solve the equation \[ \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right), \] where \( a, x \in (0, 1) \), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR|Exercise Integrals|62 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) , then what os the value of x ?

If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^2))=tan^(-1)((2x)/(1-x^(2))) then what is the value of x?

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))), where '-1

If: 3 sin^(-1)((2x)/(1+x^(2))) - 4 cos^(-1)((1-x^(2))/(1+x^(2))) + 2 tan^(-1)((2x)/(1-x^(2)))=pi/3 , where |x| lt 1 , then: x=

Solve 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-1)((2x)/(1-x^(2)))=(pi)/(3)

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))

NCERT EXEMPLAR-INVERSE TRIGONOMETRIC FUNCTIONS-Inverse Trigonometric Functions
  1. The value of 2sec^(-1) + 2 sin^(-1)(1/2) is

    Text Solution

    |

  2. If tan^(-1) x + tan^(-1) y = (4pi)/(5), then cot^(-1) x + cot^(-1) y ...

    Text Solution

    |

  3. If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((...

    Text Solution

    |

  4. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  5. The value of tan(1/2 cos^(-1)'2/(sqrt(5))) is

    Text Solution

    |

  6. If |x| le 1, then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  7. If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi, then alpha (...

    Text Solution

    |

  8. The number of real solutions of the equation sqrt(1+cos2x) = sqrt(2)...

    Text Solution

    |

  9. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  10. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  11. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  12. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  13. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  14. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  15. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  16. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  17. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  18. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  19. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  20. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |