Home
Class 12
MATHS
The value of tan(1/2 cos^(-1)'2/(sqrt(5)...

The value of `tan(1/2 cos^(-1)'2/(sqrt(5)))` is

A

`2+sqrt(5)`

B

`sqrt(5) -2`

C

`(sqrt(5)+2)/(2)`

D

`5+sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \), we will follow these steps: ### Step 1: Let \( \theta = \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \) This means that \( \cos(\theta) = \frac{2}{\sqrt{5}} \). ### Step 2: Use the double angle identity for cosine From the identity \( \cos(2\theta) = 2\cos^2(\theta) - 1 \), we can express \( \cos(2\theta) \): \[ \cos(2\theta) = 2\left(\frac{2}{\sqrt{5}}\right)^2 - 1 = 2 \cdot \frac{4}{5} - 1 = \frac{8}{5} - 1 = \frac{3}{5} \] ### Step 3: Find \( \sin(2\theta) \) Using the Pythagorean identity, we can find \( \sin(2\theta) \): \[ \sin^2(2\theta) + \cos^2(2\theta) = 1 \] \[ \sin^2(2\theta) + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2(2\theta) + \frac{9}{25} = 1 \] \[ \sin^2(2\theta) = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \sin(2\theta) = \frac{4}{5} \quad (\text{since } 2\theta \text{ is in the first quadrant}) \] ### Step 4: Find \( \tan(\theta) \) Using the identities for sine and cosine: \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \] We need to find \( \sin(\theta) \): \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] \[ \sin^2(\theta) + \left(\frac{2}{\sqrt{5}}\right)^2 = 1 \] \[ \sin^2(\theta) + \frac{4}{5} = 1 \] \[ \sin^2(\theta) = 1 - \frac{4}{5} = \frac{1}{5} \] \[ \sin(\theta) = \frac{1}{\sqrt{5}} \] Now, we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}} = \frac{1}{2} \] ### Step 5: Find \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \) Using the half-angle formula: \[ \tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos(\theta)}{\sin(\theta)} \] Substituting the values: \[ \tan\left(\frac{\theta}{2}\right) = \frac{1 - \frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}} \] \[ = \frac{\sqrt{5} - 2}{1} = \sqrt{5} - 2 \] Thus, the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \) is \( \sqrt{5} - 2 \). ### Final Answer: \[ \boxed{\sqrt{5} - 2} \]

To find the value of \( \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \), we will follow these steps: ### Step 1: Let \( \theta = \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) \) This means that \( \cos(\theta) = \frac{2}{\sqrt{5}} \). ### Step 2: Use the double angle identity for cosine From the identity \( \cos(2\theta) = 2\cos^2(\theta) - 1 \), we can express \( \cos(2\theta) \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR|Exercise Integrals|62 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR|Exercise Linear Programming|45 Videos

Similar Questions

Explore conceptually related problems

The value of tan[(1)/(2)cos^(-1)((sqrt5)/(3))] is

The value of tan[1/2cos^(-1).sqrt5/3] is

The value of tan[(1)/(2)cos^(-1)((sqrt(5))/(3))] is :

Find the value of tan((1)/(2)cos^(-1)((sqrt(5))/(3)))

Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

Find the value oftan [(1)/(2)*cos^(-1)((sqrt(5))/(3))]

The value of tan^(-1)(1)+cos^(-1)(-(1)/(sqrt2)) is:

The value of tan^(-1)[2 sin(2 cos^(-1)""(sqrt(3))/(2))] is

NCERT EXEMPLAR-INVERSE TRIGONOMETRIC FUNCTIONS-Inverse Trigonometric Functions
  1. If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((...

    Text Solution

    |

  2. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  3. The value of tan(1/2 cos^(-1)'2/(sqrt(5))) is

    Text Solution

    |

  4. If |x| le 1, then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

    Text Solution

    |

  5. If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi, then alpha (...

    Text Solution

    |

  6. The number of real solutions of the equation sqrt(1+cos2x) = sqrt(2)...

    Text Solution

    |

  7. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  8. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  9. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  10. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  11. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  12. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  13. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  14. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  15. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  16. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  17. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  18. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  19. All trigonometric functions have inverse over their respective domai...

    Text Solution

    |

  20. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |