Home
Class 9
MATHS
Simplify : (i) 2^(2/3). 2^(1/5) (ii) (1...

Simplify : (i) `2^(2/3). 2^(1/5)` (ii) `(1/(3^3))^7` (iii) `(11^(1/2))/(11^(1/4))` (iv) `7^(1/2). 8^(1/2)`

Text Solution

AI Generated Solution

Let's simplify each part step by step: ### (i) Simplify \( 2^{2/3} \cdot 2^{1/5} \) 1. **Identify the bases**: The bases are the same (both are 2). 2. **Apply the law of exponents**: According to the law \( a^m \cdot a^n = a^{m+n} \), we can add the exponents. \[ 2^{2/3} \cdot 2^{1/5} = 2^{(2/3 + 1/5)} ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Simplify (i) 2^(2/3). 2^(1/3) (ii) (3^(1/5))^4 (iii) (7^(1/5))/(7^(1/3)) (iv) 13^(1/5). 17^(1/5)

Solve : (i) 2^((2)/(3))*2^((1)/(4)) (ii) ((1)/(3^(3)))^(7) (iii) (11^((1)/(2)))/(11^((1)/(4))) (iv) 7^((1)/(2))*8^((1)/(2))

1 Simplify: (i) 2^((2)/(3)) times 2^((1)/(5) and ((1)/(3)^(3))^(7)

Simplify (i) (6^(1//4))/(6^(1//5)) (ii) (8^(1//2))/(8^(2//3)) (iii) (5^(6//7))/(5^(2//3))

Simplify (i) (3^(4))^((1)/(2)) (ii) (64)^((1)/(6)) (iii) ((1)/(3^(4)))^((1)/(2))

Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))

Simplify: (-18 1/3 xx 2 8/11) -(4 5/7 xx 2 (1/3))

Simplify: 4 2/3+\ 3 1/4+\ 7 1/2

Simplify (i) 2/3+5/6-1/9 (ii) 8-4 1/2-2 1/4 (iii) 8 5/6- 3 3/8+ 1 7/12

Evaluate (i) (1^(3) + 2^(3) + 3^(3))^((1)/(2)) (ii) [5(8^((1)/(2)) +27^((1)/(3)))^(3)]^((1)/(4)) (iii) (2^(0) + 7^(0))/(5^(0)) (iv) [(16)^((1)/(2))]^((1)/(2))