Home
Class 8
MATHS
Evaluate root3(216 xx 343)...

Evaluate `root3(216 xx 343)`

A

`36`

B

`45`

C

`42`

D

`49`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sqrt[3]{216 \times 343} \), we can follow these steps: ### Step 1: Factor the numbers First, we need to factor both numbers, 216 and 343, into their prime factors. - **For 216**: - \( 216 = 6 \times 36 \) - \( 36 = 6 \times 6 \) - Therefore, \( 216 = 6 \times 6 \times 6 = 6^3 \). - **For 343**: - \( 343 = 7 \times 49 \) - \( 49 = 7 \times 7 \) - Therefore, \( 343 = 7 \times 7 \times 7 = 7^3 \). ### Step 2: Rewrite the expression Now we can rewrite the expression \( \sqrt[3]{216 \times 343} \) using the prime factorization: \[ \sqrt[3]{216 \times 343} = \sqrt[3]{6^3 \times 7^3} \] ### Step 3: Apply the property of cube roots Using the property of cube roots, we can separate the cube roots: \[ \sqrt[3]{6^3 \times 7^3} = \sqrt[3]{6^3} \times \sqrt[3]{7^3} \] ### Step 4: Simplify the cube roots Now we can simplify each cube root: \[ \sqrt[3]{6^3} = 6 \quad \text{and} \quad \sqrt[3]{7^3} = 7 \] ### Step 5: Multiply the results Now we multiply the results of the cube roots: \[ 6 \times 7 = 42 \] ### Final Answer Thus, the value of \( \sqrt[3]{216 \times 343} \) is \( 42 \). ---
Promotional Banner

Topper's Solved these Questions

  • CUBES AND CUBE ROOTS

    RS AGGARWAL|Exercise Test Paper-4 (Fill in the blanks)|4 Videos
  • CUBES AND CUBE ROOTS

    RS AGGARWAL|Exercise Exercise 4D|10 Videos
  • CONSTRUCTION OF QUADRILATERALS

    RS AGGARWAL|Exercise Test Paper-17 (E)|1 Videos
  • DATA HANDLING

    RS AGGARWAL|Exercise Exercise 21C|11 Videos

Similar Questions

Explore conceptually related problems

root3(216 xx 64)=?

Evaluate root3(125 xx 64) .

Evaluate root3(64 xx 729)

Evaluate root3(343)

Evaluate : root3(15625 xx 216)/root3(3375)

Evaluate root3((-64)/(343))

Evaluate root3((-512)/(343))

Evaluate : root3(1372) xx root3(1458) .

Evaluate root3((125)/(216))

Evaluate : root3(57(132)/343)