Home
Class 12
MATHS
Let (x,y) be a variable point on the cur...

Let (x,y) be a variable point on the curve `4x^(2)+9y^(2)-8x-36y+15=0`. Then min`(x^(2)-2x+y^(2)-4y+5)+"max"(x^(2)-2x+y^(2)-4y+5)` is- (A) `325/36 ` (B) ` 36/325 ` (C) ` 13/25 ` (D) `25/13 `

A

`(325)/(36)`

B

`(36)/(325)`

C

`(13)/(25)`

D

`(25)/(13)`

Text Solution

Verified by Experts

The correct Answer is:
A

`4x^(2)+9y^(2)-8y-36y+15=0`
`4(x^(2)-2y)+9(y^(2)-4y)=-15`
`4(x^(2)-2x+1)+9(y^(2)-4y+4=-15+4+36`
`4(x-1)^(2)+9(y-2)^(2)=25`
`((x-a)^(2))/(((5)/(2))^(2))+((y-2)^(2))/(((5)/(3))^(2))=1`……….(1)
`x^(2)-2x+y^(2)-4y+5`
`(x-1)^(2)+(y-2)^(2)`
min of `((x-1)^(2)+(y-2)^(2))=(25)/(9)`
max of `((x-1)^(2)+(y-2)^(2))=(25)/(4)`
`=(25)/(9)+(25)/(4)=(325)/(36)`
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART -I MATHEMATICS|20 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-II MATHEMATICS|10 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-2 MATHEMATICS|5 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

The point of tangency of the circles x^(2)+y^(2)-2x-4y=0 and x^(2)+y^(2)-8y-4=0 is

Find area of the ellipse 4x ^(2) + 9y ^(2) = 36.

Find the latus rectum, eccentricity and foci of the curve 4x^(2)+9y^(2)-8x-36y+4=0

The power ofthe centre of x^(2)+y^(2)-8x+4y-10=0 with respect to 5x^(2)+5y^(2)+4x+2y-1=0 is

Find the equation of radical axis of the circles x^(2)+y^(2)-3x+5y-7=0 and 2x^(2)+2y^(2)-4x+8y-13=0 .

The centre of circle cutting the three circles x^(2)+y^(2)-4x-4y+5=0 , x^(2)+y^(2)-4x-6y+5=0 , x^(2)+y^(2)-4x-8y+5=0 orthogonally is