Home
Class 12
MATHS
Let f(x)=(x+1)/(x-1) for all xne1. Let ...

Let `f(x)=(x+1)/(x-1)` for all `xne1`. Let `f^(1)(x)=f(x),f^(2)(x)=f(f(x))` and generally `f^(n)(x)=f(f^(n-1)(x)) " for n"gt1` Let `P=f^(1)(2)f^(2)(3)f^(3)(4)f^(4)(5)` Which of the following is a multiple of P- (A) 125 (B) 375 (C) 250 (D) 147

A

125

B

375

C

250

D

147

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=(x+1)/(x-1)`
`f^(2)(x)=f(f(x))=f((x+1)/(x-1))=((x+1)/(x-1)+1)/((x+1)/(x-1)-1)=x`
`f^(3)(x)=f(x)=(x+1)/(x-1)`
`f^(4)(x)=x`
`P=f(2).f^(3)(3)f^(3)(4)f^(4)(5)`
`P=3xx3xx(5)/(3)xx5=75`
Multiple of P is 375
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART -I MATHEMATICS|20 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-II MATHEMATICS|10 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART-2 MATHEMATICS|5 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1-x)/(1+x) , xne1 then show that f(1/x)=-f(x)

Let f_(1)(x)={x,x 1 and 0 otherwise f_(2)(x)=f_(1)(-x) for all x abd f_(3)(x)=-f_(2)(x) for all x and f_(4)(x)=-f_(3)(-x) for all x Which of the following is necessarily true?

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

Let f_(1)(x)=e^(x),f_(2)(x)=e^(f_(1)(x)),......,f_(n+1)(x)=e^(f_(n)(x)) for all n>=1. Then for any fixed n,(d)/(dx)f_(n)(x) is

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)=(x)/(x+3) , then (1)/(f(x+1))-f((1)/(x+1))=?

Let f(x)=(1)/(2)[f(xy)+f((x)/(y))] for x,y in R^(+) such that f(1)=0f'(1)=2

Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f _(1) (x)=f (x), f_(n) (x)=f (f _(n-1) (x))) for pige 2, n in N, then f _(2008) (x)+ f _(2009) (x)=

Let f(x)=x^(2)+4x+1. Then (A) f(x)>0 for all x(B)f(x)>1 when x>=0 (C) f(x)>=1 when x<=-4(D)f(x)=f(-x) for all x

Let f(x)=x^(3)/3-x^(2)/2+x-16 . Find f^(')(0), f^(')(-1) .