Home
Class 12
MATHS
If n is a positive integer and omegane1 ...

If n is a positive integer and `omegane1` is a cube of unity, the number of possible values of `|e^(sum_(k=0)^(n) ((n)/(k))omega^(k))|`

A

2

B

3

C

4

D

6

Text Solution

Verified by Experts

The correct Answer is:
C

`underset(k-0)overset(n)sum .^(n)C_(k)omega^(k)=""^(n)C_(1)omega+....+""^(c)C_(n)omega^(n)`
`=(1omega)^(n)=(-omega^(2))^(n)`
`(-1)^(n) omega^(2n)`
`:. |e^((-1)^(n)omega^(2n))|=|e^((-omega^(2))^(n))|`
`=|e^(-cos.(npi)/(3)isin""(4pi)/(3))|`
`=|e^(cos.(npi)/(3))|` can have values
`={e^(1),e^(1//2),e^(-1//2),e^(-1)}`
Four values.
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise Part A - Mathematics|20 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise Part B- Mathematics|10 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART -I MATHEMATICS|20 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

If n is a positive integer and (1+i)^(2n)=k cos(n pi/2) , then the value of k is

The value of sum_(r=1)^(n+1)(sum_(k=1)^(n)C(k,r-1))=

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

If omega ne 1 is a cube root of unity, then z=sum_(k=1)^(60)omega^(k) - prod_(k=1)^(30)omega^(k) is equal to

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

If n is a positive integer and C_(k)=.^(n)C_(k) then find the value of sum_(k=1)^(n)k^(3)*((C_(k))/(C_(k-1)))^(2)

The value of lim sum_(k=1)^(n)(n-k)/(n)cos((4k)/(n)) equals to

Find the sum sum_(k=0)^n ("^nC_k)/(k+1)