Home
Class 12
MATHS
Let I(n)=int(0)^(pi//2)x^(n)cosxdx, wher...

Let `I_(n)=int_(0)^(pi//2)x^(n)cosxdx,` where in is a non-negative integer
Then `sum_(n=2)^(oo)((I_(n))/(n!)+(I_(n-2))/((n-2)!))` equals-

A

`e^(pi//2)-1-(pi)/(2)`

B

`e^(pi//2)-1`

C

`e^(pi//2)-(pi)/(2)`

D

`e^(pi//2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`I_(n)=int_(0)^(pi//2)x_(1)^(n)underset(II)cosxdx`
`=x^(n)sinx|_(0)^(pi//2)-int_(0)^(pi//2)nx^(n-1)sinxdx`
`=((pi)/(2))^(2)-0-(nx^(n-1)(-cosx)|_(0)^(pi//2)-int_(0)^(pi//2)n(n-1)x^(n-2)(-cosx)dx`
`=((pi)/(2))^(n)-0-(n-1)int_(0)^(pi//2)x^(n-2)cosxdx`
`I_(n)=((pi)/(2))^(n)-n(n-1)I_(n-2)`
`underset(n=2)overset(oo)sum((I_(n))/(n!)+(I_(n-2))/((n-2)!))=underset(n=2)overset(oo)sum((((pi)/(2))^(2)-n(n-1)I_(n-2))/(n!)+(I_(n-2))/((n-2)!))`
`underset(n=2)overset(oo)sum(((pi)/(2))^(n)(1)/(n!))`
`=((pi)/(2))^(2)(1)/(2!)+((pi)/(2))^(3)(1)/(3!)+((pi)/(2))^(4)(1)/(4!)+....`
`e^(pi//2)-1-((pi)/(2))`
Promotional Banner

Topper's Solved these Questions

  • KVPY

    KVPY PREVIOUS YEAR|Exercise Part A - Mathematics|20 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise Part B- Mathematics|10 Videos
  • KVPY

    KVPY PREVIOUS YEAR|Exercise PART -I MATHEMATICS|20 Videos
  • KVPY 2021

    KVPY PREVIOUS YEAR|Exercise PART II MATHEMATICS|4 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

Let I_(n) = int_(0)^(1) (logx)^(n)dx , where n is a non-negative integer. Then I_(2001) - 2011 I_(2010) is equal to -

sum_ (n = 0)^(oo) ((2i)/(3))^(n) =

Let I_(n) = int_(0)^(1//2)(1)/(sqrt(1-x^(n))) dx where n gt 2 , then

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, where n is a positive integer,then I_(10)+I_(8) is equal to (A)(1)/(9)(B)(1)/(8) (C) (1)/(7)(D)9