Home
Class 12
MATHS
The vertices of a triangle are (a, atana...

The vertices of a triangle are (a, atan`alpha`), B (b, `beta`) and C (c, Ctan`gamma`) . If the cicumcentre of `DeltaABC` coincides with the origin and `H(bar(X) , bar(Y))` is the orthocentre, then show that `bary/x=("Sin alpha + sinbeta+singamma)/(cosalpha+cosbeta+cosgamma)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to show that: \[ \frac{\bar{y}}{\bar{x}} = \frac{\sin \alpha + \sin \beta + \sin \gamma}{\cos \alpha + \cos \beta + \cos \gamma} \] where the vertices of the triangle are \( A(a, a \tan \alpha) \), \( B(b, b \tan \beta) \), and \( C(c, c \tan \gamma) \), and the circumcenter coincides with the origin. ### Step-by-Step Solution: 1. **Find the Coordinates of the Centroid \( G \)**: The coordinates of the centroid \( G \) of triangle \( ABC \) can be calculated as: \[ G\left(\frac{a + b + c}{3}, \frac{a \tan \alpha + b \tan \beta + c \tan \gamma}{3}\right) \] 2. **Using the Circumcenter**: Given that the circumcenter coincides with the origin, we have: \[ O(0, 0) \] 3. **Finding the Orthocenter \( H(\bar{x}, \bar{y}) \)**: The centroid \( G \) divides the line segment joining the orthocenter \( H \) and the circumcenter \( O \) in the ratio \( 2:1 \). Therefore, we can express the coordinates of \( H \) as: \[ \bar{x} = \frac{3}{2} \cdot \frac{a + b + c}{3} = \frac{a + b + c}{2} \] \[ \bar{y} = \frac{3}{2} \cdot \frac{a \tan \alpha + b \tan \beta + c \tan \gamma}{3} = \frac{a \tan \alpha + b \tan \beta + c \tan \gamma}{2} \] 4. **Finding the Distances**: Since the circumcenter is at the origin, the distances from the circumcenter to each vertex are equal. This gives us: \[ \sqrt{a^2 + (a \tan \alpha)^2} = \sqrt{b^2 + (b \tan \beta)^2} = \sqrt{c^2 + (c \tan \gamma)^2} \] This implies: \[ a^2 (1 + \tan^2 \alpha) = b^2 (1 + \tan^2 \beta) = c^2 (1 + \tan^2 \gamma) \] Using \( 1 + \tan^2 \theta = \sec^2 \theta \), we can rewrite this as: \[ a^2 \sec^2 \alpha = b^2 \sec^2 \beta = c^2 \sec^2 \gamma \] 5. **Expressing \( a, b, c \)**: From the above equality, we can express \( a, b, c \) in terms of a common radius \( r \): \[ a = r \cos \alpha, \quad b = r \cos \beta, \quad c = r \cos \gamma \] 6. **Substituting in \( \bar{y} \) and \( \bar{x} \)**: Now substituting \( a, b, c \) into \( \bar{x} \) and \( \bar{y} \): \[ \bar{x} = \frac{r \cos \alpha + r \cos \beta + r \cos \gamma}{2} = \frac{r}{2} (\cos \alpha + \cos \beta + \cos \gamma) \] \[ \bar{y} = \frac{r \tan \alpha \cdot r \cos \alpha + r \tan \beta \cdot r \cos \beta + r \tan \gamma \cdot r \cos \gamma}{2} = \frac{r^2}{2} \left( \frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta} + \frac{\sin \gamma}{\cos \gamma} \right) \] 7. **Final Ratio**: Now, we can find the ratio \( \frac{\bar{y}}{\bar{x}} \): \[ \frac{\bar{y}}{\bar{x}} = \frac{\frac{r^2}{2} \left( \sin \alpha + \sin \beta + \sin \gamma \right)}{\frac{r}{2} (\cos \alpha + \cos \beta + \cos \gamma)} = \frac{r \left( \sin \alpha + \sin \beta + \sin \gamma \right)}{(\cos \alpha + \cos \beta + \cos \gamma)} \] Since \( r \) cancels out, we obtain: \[ \frac{\bar{y}}{\bar{x}} = \frac{\sin \alpha + \sin \beta + \sin \gamma}{\cos \alpha + \cos \beta + \cos \gamma} \] ### Conclusion: Thus, we have shown that: \[ \frac{\bar{y}}{\bar{x}} = \frac{\sin \alpha + \sin \beta + \sin \gamma}{\cos \alpha + \cos \beta + \cos \gamma} \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • STRAIGHT LINE

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|31 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are A(x_(1),x_(1)tan alpha),B(x_(2),x_(2)tan B eta) and C(x_(3),x_(3)tan gamma). If the circumcentre of Delta ABC coincides with the origin and H(a,b) be its orthocentre,then (a)/(b) is equal to

The vertices of a triangle are A(x_(1),x_(1)tan theta_(1)),B(x_(2),x_(2)tan theta_(2))and C(x_(3),x_(3)tan theta_(3)) if the circumcentre of Delta ABC coincides with the origin and H(bar(x),bar(y)) is the orthocentre,show that (bar(y))/(bar(x))=(sin theta1+sin theta_(2)+sin theta_(3))/(cos theta_(1)+cos theta_(2)+cos theta_(3))

The circumcentre of a triangle having vertices A(a,a tan alpha),B(b,b tan beta),C(c,c tan gamma) is at origin,where alpha+beta+gamma=pi. Then the orthocentre lies on

If cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0 , then the value of cos3alpha+cos3beta+cos3gamma is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC is

Delta ABC has vertices A(a cos alpha,a sin alpha),B(a cos beta,a sin beta) and C(a cos gamma,a sin gamma) then its orthocentre is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC=