Home
Class 12
MATHS
In a DeltaABC , A =(h,7) , B = (1,2) , C...

In a `DeltaABC , A =(h,7) , B = (1,2) , C =(2,3)` If the area of `DeltaABC` be such that `[Delta]=2` , (where [.] denotes the greatest inteher function ),find h.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|12 Videos
  • STRAIGHT LINE

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|31 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, A -= (alpha, beta), B -= (1, 2), C -= (2,3) and point A lies on the line y = 2 x + 3 where alpha, beta in l . If the area of Delta ABC be such that [Delta]=2 , where [.] denotes the greatest integer function, find all possible coordinates of A.

If, in DeltaABC, a = sqrt(2), b = sqrt(3), c = sqrt(5) , then the area of Delta ABC is

In DeltaABC, let b=6, c=10and r_(1) =r_(2)+r_(3)+r then find area of Delta ABC.

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

The ends of the base of an isosceles triangle are (2sqrt(2), 0) and (0, sqrt(2)) . One side is of length 2sqrt(2) . If Delta be the area of triangle, then the value of [Delta] is (where [.] denotes the greatest integer function)

In a A B C ,A-=(alpha,beta),B-=(1,2),C-=(2,3), point A lies on the line y=2x+3, where alpha,beta are integers, and the area of the triangle is S such that [S]=2 where [ . ] denotes the greatest integer function. Then the possible coordinates of A can be (a) (-7,-11) (b) (-6,-9) (c) (2,7) (d) (3,9)

Area of the region bounded by [x] ^(2) =[y] ^(2), if x in [1,5] , where [ ] denotes the greatest integer function is:

In a DeltaABC , if a =2x, b =2y and DeltaC =120° , then area of the triangle is

Find the area of DeltaABC , if a=2, b=3 and c=5 cm

Find the period of the functions (where [ * ] denotes greatest integer function) f(x) = 2 + 3 cos (x - 2)