Home
Class 12
MATHS
If points A(5/sqrt2,sqrt3) and (cos^2the...

If points `A(5/sqrt2,sqrt3)` and `(cos^2theta, costheta)` are the same side the line 2x - y = 1, then find the values of `theta` in `[pi,2pi]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( \theta \) in the interval \([ \pi, 2\pi ]\) such that the points \( A( \frac{5}{\sqrt{2}}, \sqrt{3} ) \) and \( ( \cos^2 \theta, \cos \theta ) \) are on the same side of the line defined by the equation \( 2x - y = 1 \). ### Step-by-Step Solution: 1. **Identify the line equation**: The line can be rewritten in the standard form: \[ 2x - y - 1 = 0 \] 2. **Determine the position of point A**: Substitute the coordinates of point \( A \) into the line equation: \[ 2\left(\frac{5}{\sqrt{2}}\right) - \sqrt{3} - 1 \] Calculate: \[ = \frac{10}{\sqrt{2}} - \sqrt{3} - 1 = 5\sqrt{2} - \sqrt{3} - 1 \] Since \( 5\sqrt{2} \approx 7.07 \) and \( \sqrt{3} \approx 1.73 \), we have: \[ 5\sqrt{2} - \sqrt{3} - 1 \approx 7.07 - 1.73 - 1 = 4.34 > 0 \] Thus, point \( A \) is above the line. 3. **Determine the position of point \( ( \cos^2 \theta, \cos \theta ) \)**: Substitute the coordinates into the line equation: \[ 2(\cos^2 \theta) - \cos \theta - 1 \] We want this expression to be greater than 0 for the point to be on the same side as point \( A \): \[ 2\cos^2 \theta - \cos \theta - 1 > 0 \] 4. **Solve the quadratic inequality**: Factor the quadratic: \[ 2\cos^2 \theta - \cos \theta - 1 = 0 \] Using the quadratic formula: \[ \cos \theta = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4} \] This gives us: \[ \cos \theta = 1 \quad \text{or} \quad \cos \theta = -\frac{1}{2} \] 5. **Determine intervals**: The roots divide the number line into intervals. We check the sign of \( 2\cos^2 \theta - \cos \theta - 1 \) in the intervals: - For \( \cos \theta < -\frac{1}{2} \) (e.g., \( \cos \theta = -1 \)): The expression is positive. - For \( -\frac{1}{2} < \cos \theta < 1 \): The expression is negative. - For \( \cos \theta > 1 \): The expression is positive (not possible since \( \cos \theta \) ranges from -1 to 1). Therefore, the valid interval is: \[ \cos \theta < -\frac{1}{2} \] 6. **Find \( \theta \) values**: The values of \( \theta \) corresponding to \( \cos \theta = -\frac{1}{2} \) are: \[ \theta = \frac{2\pi}{3}, \frac{4\pi}{3} \] Since we need \( \theta \) in the interval \( [\pi, 2\pi] \), we take: \[ \theta \in \left[ \frac{4\pi}{3}, 2\pi \right] \] ### Final Answer: The values of \( \theta \) in the interval \([ \pi, 2\pi ]\) such that the points are on the same side of the line are: \[ \theta \in \left[ \frac{4\pi}{3}, 2\pi \right] \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - I (Fill in the Blanks )|5 Videos
  • STRAIGHT LINE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - II|14 Videos
  • STRAIGHT LINE

    FIITJEE|Exercise Exercise 6|4 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos

Similar Questions

Explore conceptually related problems

If costheta=(1)/(sqrt(2)) ,then find the value of cos2theta .

If the points (-2, 0), (-1,(1)/(sqrt(3))) and (cos theta, sin theta) are collinear, then the number of value of theta in [0, 2pi] is

If 0 le theta lt pi/2 and costheta + sqrt(3) sin theta =2 , then what is the value of theta ?

If P (sin theta, 1//sqrt(2)) and Q(1//sqrt(2), cos theta), -pi le theta le pi are two points on the same side of the line x-y=0, then theta belongs to the interval

If 2cos(theta)+sin(theta)=1 and (3 pi)/(2)

If sintheta=sqrt(3)costheta,-pi

If cos theta= -1/2 and pi < theta < (3pi)/2 then find the value of 4tan^2 theta- 3cosec^2 theta