Home
Class 12
MATHS
If A(cosalpha, sinalpha),B(sinalpha- cos...

If `A(cosalpha, sinalpha),B(sinalpha- cosalpha) , C (2,1)` are the vertices of a `DeltaABC` , then as `alpha` varies the locus of its centroid is

A

`x^2+y^2-2x-4y+1=0`

B

`3(x^2+y^2)-2x-4y+1=0`

C

`x^2+y^2-2x-4y+3=0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the centroid of triangle ABC with vertices A(cosα, sinα), B(sinα - cosα, cosα), and C(2, 1) as α varies, we will follow these steps: ### Step 1: Determine the coordinates of the centroid G The centroid G of a triangle with vertices A(x1, y1), B(x2, y2), and C(x3, y3) is given by the formula: \[ G\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \] For our triangle ABC: - A = (cosα, sinα) - B = (sinα - cosα, cosα) - C = (2, 1) ### Step 2: Calculate the x-coordinate of the centroid Using the coordinates of A, B, and C: \[ x_G = \frac{cosα + (sinα - cosα) + 2}{3} \] Simplifying this: \[ x_G = \frac{sinα + 2}{3} \] ### Step 3: Calculate the y-coordinate of the centroid Now, we calculate the y-coordinate: \[ y_G = \frac{sinα + cosα + 1}{3} \] ### Step 4: Set up the equations for x and y We have: \[ x = \frac{sinα + 2}{3} \quad \text{(1)} \] \[ y = \frac{sinα + cosα + 1}{3} \quad \text{(2)} \] ### Step 5: Express sinα in terms of x From equation (1): \[ sinα = 3x - 2 \quad \text{(3)} \] ### Step 6: Substitute sinα into equation (2) Substituting (3) into (2): \[ y = \frac{(3x - 2) + cosα + 1}{3} \] This simplifies to: \[ y = \frac{3x - 1 + cosα}{3} \] Thus: \[ cosα = 3y - 3x + 1 \quad \text{(4)} \] ### Step 7: Use the identity sin²α + cos²α = 1 Using the Pythagorean identity: \[ (3x - 2)^2 + (3y - 3x + 1)^2 = 1 \] ### Step 8: Expand and simplify Expanding this: 1. For \( (3x - 2)^2 = 9x^2 - 12x + 4 \) 2. For \( (3y - 3x + 1)^2 = 9y^2 - 18xy + 9x^2 - 6y + 6x + 1 \) Combining these: \[ 9x^2 - 12x + 4 + 9y^2 - 18xy + 9x^2 - 6y + 6x + 1 = 1 \] This simplifies to: \[ 18x^2 + 9y^2 - 18xy - 6y - 6x + 4 = 0 \] ### Step 9: Rearranging the equation Rearranging gives us: \[ 18x^2 + 9y^2 - 18xy - 6x - 6y + 3 = 0 \] ### Step 10: Divide by 3 for simplicity Dividing the entire equation by 3: \[ 6x^2 + 3y^2 - 6xy - 2x - 2y + 1 = 0 \] ### Final Result The locus of the centroid G as α varies is given by the equation: \[ 6x^2 + 3y^2 - 6xy - 2x - 2y + 1 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level - II|20 Videos
  • STRAIGHT LINE

    FIITJEE|Exercise COMPREHENSIONS|9 Videos
  • STRAIGHT LINE

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level - II|14 Videos
  • STATISTICS

    FIITJEE|Exercise Comprehension Type|6 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos

Similar Questions

Explore conceptually related problems

if A(cosalpha,sinalpha),B(sinalpha,-cosalpha),C(1,2) are the vertices of DeltABC ,then as alpha Find the locsus of its centroid.

If A(cos alpha, sin alpha), B(sin alpha, -cos alpha), C(1,2) are the vertices of a triangle, then as alpha varies the locus of centroid of the DeltaABC is a circle whose radius is :

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

If A(cos alpha,sin alpha),B(sin alpha,-cos alpha) and C(2,1) are the vertices of a triangle ABC . The locus of the centroid if alpha varies is

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

If A(cos theta, sin theta), B (sin theta, cos theta), C (1, 2) are the vertices of DeltaABC . Find the locus of its centroid if theta varies.

FIITJEE-STRAIGHT LINE -ASSIGNMENT PROBLEMS (OBJECTIVE) Level - I
  1. Two vertices of a triangle are (5,-1) and (-2,3) If the orthocentre of...

    Text Solution

    |

  2. The number of integer values of m. for which the x - coordinate of the...

    Text Solution

    |

  3. If A(cosalpha, sinalpha),B(sinalpha- cosalpha) , C (2,1) are the verti...

    Text Solution

    |

  4. The straight line y = x - 2 rotates about a point where it cuts x-axis...

    Text Solution

    |

  5. It is desired to construct a right angled triangle ABC (/C= pi/2) in x...

    Text Solution

    |

  6. If 3a + 2b + 6c = 0 the family of straight lines ax+by = c = 0 pass...

    Text Solution

    |

  7. Prove that the area of the parallelogram formed by the lines xcosalpha...

    Text Solution

    |

  8. Consider the equation y - y(1) = m(x - x(1)). If m and different lines...

    Text Solution

    |

  9. The medians A D\ a n d\ B E of a triangle with vertices A(0, b),\ B(0,...

    Text Solution

    |

  10. If DeltaOAB is an equilateral triangle (O is the origin and A is a poi...

    Text Solution

    |

  11. Let 2x - 3y = 0 be a given line and P (sintheta, 0) and Q(0, costheta)...

    Text Solution

    |

  12. The sides of a rhombus ABCD are parallel to the lines x−y+2=0 and 7x−y...

    Text Solution

    |

  13. If the lines ax+12y+1=0 bx+13y+1=0 and cx+14y+1=0 are concurrent then ...

    Text Solution

    |

  14. The equations of the lines through (-1,-1) and making anlge 45^@ with ...

    Text Solution

    |

  15. The equation to a pair of opposite sides of a parallelogram are x^2-5x...

    Text Solution

    |

  16. The locus of a point P which divides the line joining (1,0) and (2 cos...

    Text Solution

    |

  17. In an isosceles right angled triangle , a straight line drwan from the...

    Text Solution

    |

  18. A curve with equation of the form y=a x^4+b x^3+c x+d has zero gradien...

    Text Solution

    |

  19. The algebraic sum of the perpendicular distance from A(x1,y1),B(x2,y2)...

    Text Solution

    |

  20. If P = (1/xp,p),Q=(1/xq,q),R=(1/xr,r) where xkne0,k =p,q , r ne N , d...

    Text Solution

    |