Home
Class 12
MATHS
If l(n)=intcos^(n)xdx, prove that l(n)=(...

If `l_(n)=intcos^(n)xdx,` prove that `l_(n)=(1)/(n)(cos^(n-1)xsinx)+((n-1)/(n))l_(n-2)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|24 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-I)|5 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise EXERCISE-8|1 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int cos^(n)xdx, then (n+1)I_(n+1)-nI_(n-1)=

If l_(m,n)=intx^(m)cosnxdx, then prove that l_(m,n)=(x^(m)sinnx)/(n)+(mx^(m-1)cosnx)/(n^(2))-(m(m-1))/(n^(2))l_(m-2,n)

Prove that: int tan^(n)xdx=(1)/(n-1)tan^(n-1)x-int tan^(n-2)xdx

Prove that: int tan^(n)xdx=(1)/(n-1)tan^(n-1)x-int tan^(n-2)xdx

If l_(n)=int e^(mx)cos^(n)xdx then prove that (m^(2)+n^(2))I_(n)=e^(mx)*(m cos x+n sin x)cos^(n-1)x+n(n-1)l_(n)

If l_(n)=intx^(n).e^(cx)dx for n ge 1 , then C.l_(n)+n.l_(n-1) is equal to

If l_(n)=int_(0)^((pi)/(4)) tan^(n) xdx show that (1)/(l_(2)+l_(4)),(1)/(l_(3)+l_(5)),(1)/(l_(4)+l_(6)),(1)/(l_(5)+l_(7)),"...." from an AP. Find its common difference.

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If 1/(1+l)=v , prove that v+v^(2)+v^(3)+………+v^(n)=(1-v^(n))/l