Home
Class 12
MATHS
If int((1-x^(7)))/(x(1+x^(7)))dx=Plog|x|...

If `int((1-x^(7)))/(x(1+x^(7)))dx=Plog|x|+Qlog|x^(7)+1|+c`, then

A

`7P+2Q=1`

B

`7P-2Q=1`

C

`7P+2Q=0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{1 - x^7}{x(1 + x^7)} \, dx, \] we can break it down into simpler parts. ### Step 1: Rewrite the Integral We can express the integrand as follows: \[ I = \int \left( \frac{1 + x^7 - 2x^7}{x(1 + x^7)} \right) \, dx = \int \left( \frac{1 + x^7}{x(1 + x^7)} - \frac{2x^7}{x(1 + x^7)} \right) \, dx. \] This simplifies to: \[ I = \int \frac{1}{x} \, dx - 2 \int \frac{x^6}{1 + x^7} \, dx. \] ### Step 2: Solve the First Integral The first integral is straightforward: \[ \int \frac{1}{x} \, dx = \log |x| + C_1. \] ### Step 3: Solve the Second Integral For the second integral, we can use a substitution. Let: \[ t = 1 + x^7 \implies dt = 7x^6 \, dx \implies dx = \frac{dt}{7x^6}. \] Now, substituting \(x^6 = (t - 1)^{6/7}\): \[ \int \frac{x^6}{1 + x^7} \, dx = \int \frac{x^6}{t} \cdot \frac{dt}{7x^6} = \frac{1}{7} \int \frac{1}{t} \, dt = \frac{1}{7} \log |t| + C_2 = \frac{1}{7} \log |1 + x^7| + C_2. \] ### Step 4: Combine the Results Putting it all together, we have: \[ I = \log |x| - 2 \cdot \frac{1}{7} \log |1 + x^7| + C. \] This simplifies to: \[ I = \log |x| - \frac{2}{7} \log |1 + x^7| + C. \] ### Step 5: Compare with the Given Form The problem states that: \[ I = P \log |x| + Q \log |1 + x^7| + C. \] From our result, we can identify: - \(P = 1\) - \(Q = -\frac{2}{7}\) ### Step 6: Analyze the Options Now, we need to check the options given in the problem. The expression \(7P + 2Q\) becomes: \[ 7(1) + 2\left(-\frac{2}{7}\right) = 7 - \frac{4}{7} = \frac{49}{7} - \frac{4}{7} = \frac{45}{7}. \] Since \(7P + 2Q \neq 1\), we conclude that the correct option is that none of the provided options are correct.
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

If : int(1-x^(7))/(x(1+x^(7)))dx=a.log|x|+b.log|x^(7)+1|+c, then : (a, b)-=

If int(1-x^(7))/(x(1+x^(7)))dx=alog_(e)|x|+blog_(e)|x^(7)+1|+c, then

If (1-x^(7))/(x(1+x^(7)))dx=a ln|x|+b ln|x^(7)+1|+c then a=1,b=(2)/(7) (b) a=-1,b=(2)/(7)a=1,b=-(2)/(7)(d)a=-1,b=-(2)/(7)

int(x^(7))/(x^(4)+1)dx

int_(0)^(1)(x^(7))/(1+x^(8))dx

int(x^(7/2))/(sqrt(x^(9)+1))dx

int((x^(2)+1))/(x^(4)+7x^(2)+1)dx=

int(1-x^(2))x^(7/3)dx

int(2x+7)/((x+1)(x^(2)+4))dx