Home
Class 12
MATHS
The value of the integral int(cos7x-cos8...

The value of the integral `int(cos7x-cos8x)/(1+2cos5x)dx` can be

A

`(sin2x)/(2)-(sin3x)/(3)+c`

B

`(sin5x)/(5)-(cos5x)/(4)+c`

C

`(cosx)/(3)-(sin4x)/(2)+c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int(cos8x-cos7x)/(1+2cos5x)dx

int(cos7x-cos8x)/(1+2cos 5x)dx=

int(cos x-cos2x)/(1-cos x)*dx

int(cos5x+cos4x)/(1-2cos3x)dx

int(cos7x-cos8x)/(cos2x-cos3x)dx

The value of int (cos 7x-cos 8x)/(1+2 cos 5x)dx , is

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is