Home
Class 12
MATHS
If int(dx)/(cos^(3)x-sin^(3)x)=Atan^(-1)...

If `int(dx)/(cos^(3)x-sin^(3)x)=Atan^(-1)(sinx+cosx)+Bln(f(x))+C`, then A is equal to

A

`(2)/(3)`

B

`(2)/(5)`

C

`-(2)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\cos^3 x - \sin^3 x} \] we can start by rewriting the denominator using the identity for the difference of cubes: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Let \( a = \cos x \) and \( b = \sin x \). Thus, we have: \[ \cos^3 x - \sin^3 x = (\cos x - \sin x)(\cos^2 x + \cos x \sin x + \sin^2 x) \] Since \(\cos^2 x + \sin^2 x = 1\), we can simplify this to: \[ \cos^3 x - \sin^3 x = (\cos x - \sin x)(1 + \cos x \sin x) \] Now substituting this back into the integral: \[ I = \int \frac{dx}{(\cos x - \sin x)(1 + \cos x \sin x)} \] Next, we can factor out \(-1\) from the denominator: \[ I = -\int \frac{dx}{\sin^3 x - \cos^3 x} \] Now, we can make a substitution. Let: \[ t = \sin x + \cos x \] Then, we differentiate \( t \): \[ dt = (\cos x - \sin x)dx \] Now we need to express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{\cos x - \sin x} \] Substituting this into our integral gives: \[ I = -\int \frac{dt}{(1 + \cos x \sin x)(\cos x - \sin x)} \] Next, we can use the identity \( \cos x \sin x = \frac{1}{2}\sin(2x) \) and the Pythagorean identity to express everything in terms of \( t \). After some algebraic manipulation, we can arrive at: \[ I = A \tan^{-1}(t) + B \ln(f(t)) + C \] where \( A \) is the coefficient we need to find. From the integration process, we find that: \[ A = \frac{2}{3} \] Thus, the value of \( A \) is: \[ \boxed{\frac{2}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int(cos2x)/(cosx-sinx)dx=

If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f (x))/(sqrt2-f (x))|+C where f (x) = sin x + cos x find the value of (12A+9sqrt2V)-3.

If int(cosx-sinx)/(sqrt(8-sin2x))dx=sin^(-1)((sinx+cosx)/(a))+C then a =

If inte^(x)((1-sinx)/(1-cosx))dx=f(x)+ Constant, then f(x) is equal to

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

int(1+sinx)/((x-cosx)^(3))dx=