Home
Class 12
MATHS
l=int(dx)/(1+e^(x)) is equal to...

`l=int(dx)/(1+e^(x))` is equal to

A

`log_(e)((1+e^(x))/(e^(x)))+c`

B

`log_(e)((e^(x))/(1+e^(x)))+c`

C

`log_(e)(e^(x))(e^(x)+1)+c`

D

`log_(e)(e^(2x)+1)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{1 + e^x} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{1 + e^x} \] To simplify this expression, we can multiply and divide by \( e^{-x} \): \[ I = \int \frac{e^{-x} \, dx}{e^{-x} + 1} \] ### Step 2: Substitute Now, we will use the substitution: \[ t = e^{-x} + 1 \] Differentiating both sides gives: \[ dt = -e^{-x} \, dx \quad \Rightarrow \quad dx = -\frac{dt}{e^{-x}} = -\frac{dt}{t - 1} \] Substituting \( e^{-x} = t - 1 \) into our integral: \[ I = \int \frac{-dt}{t - 1 + 1} = \int \frac{-dt}{t} = -\int \frac{dt}{t} \] ### Step 3: Integrate The integral of \( \frac{1}{t} \) is: \[ -\int \frac{dt}{t} = -\ln |t| + C \] where \( C \) is the constant of integration. ### Step 4: Substitute Back Now we substitute back for \( t \): \[ I = -\ln |t| + C = -\ln |e^{-x} + 1| + C \] Using the property of logarithms: \[ I = \ln \left| \frac{1}{e^{-x} + 1} \right| + C \] ### Step 5: Simplify We can rewrite this as: \[ I = \ln \left( \frac{1}{1 + e^{-x}} \right) + C \] To express it in a more standard form, we can multiply and divide by \( e^x \): \[ I = \ln \left( \frac{e^x}{e^x + 1} \right) + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \ln \left( \frac{e^x}{e^x + 1} \right) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integration.

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)+1)dx is equal to

int(1)/(e^(x)-1)dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

int1/(1+e^(x))dx is equal to

int(e^x)/(e^(x)+1)dx" is equal to "

int(dx)/(e^(x)+e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) is equal to :

int(dx)/(e^(x)+e^(-x)) is equal to