Home
Class 12
MATHS
inte^(x)sinxcosxcos2xcos4xdx...

`inte^(x)sinxcosxcos2xcos4xdx`

A

`(e^(x))/(4sqrt(65))sin(8x-tan^(-1)8)+c`

B

`(e^(x))/(8sqrt(65))sin(8x-tan^(-1)8)+c`

C

`(e^(x))/(8)sin(8x-tan^(-1)8)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \sin x \cos x \cos 2x \cos 4x \, dx \), we can follow these steps: ### Step 1: Simplify using trigonometric identities We know that: \[ 2 \sin x \cos x = \sin(2x) \] Thus, we can rewrite the integral as: \[ \int e^x \sin x \cos x \cos 2x \cos 4x \, dx = \frac{1}{2} \int e^x \sin(2x) \cos(2x) \cos(4x) \, dx \] ### Step 2: Apply the identity again Next, we use the identity again on \( \sin(2x) \cos(4x) \): \[ 2 \sin(2x) \cos(4x) = \sin(6x) + \sin(2x) \] So, we multiply and divide by 2: \[ \frac{1}{2} \int e^x \sin(2x) \cos(4x) \, dx = \frac{1}{4} \int e^x ( \sin(6x) + \sin(2x) ) \, dx \] ### Step 3: Separate the integral Now, we separate the integral: \[ \frac{1}{4} \left( \int e^x \sin(6x) \, dx + \int e^x \sin(2x) \, dx \right) \] ### Step 4: Use integration by parts We will use integration by parts for both integrals. Let’s denote: \[ I_1 = \int e^x \sin(6x) \, dx \] \[ I_2 = \int e^x \sin(2x) \, dx \] For \( I_1 \): Let \( u = e^x \) and \( dv = \sin(6x) \, dx \). Then: \[ du = e^x \, dx, \quad v = -\frac{1}{6} \cos(6x) \] Thus, \[ I_1 = -\frac{1}{6} e^x \cos(6x) - \int -\frac{1}{6} \cos(6x) e^x \, dx \] This gives: \[ I_1 = -\frac{1}{6} e^x \cos(6x) + \frac{1}{6} I_1 \] Solving for \( I_1 \): \[ I_1 \left(1 - \frac{1}{6}\right) = -\frac{1}{6} e^x \cos(6x) \] \[ I_1 \cdot \frac{5}{6} = -\frac{1}{6} e^x \cos(6x) \] \[ I_1 = -\frac{1}{5} e^x \cos(6x) \] For \( I_2 \): Using the same method: \[ I_2 = -\frac{1}{2} e^x \cos(2x) + \frac{1}{2} I_2 \] Solving for \( I_2 \): \[ I_2 \left(1 - \frac{1}{2}\right) = -\frac{1}{2} e^x \cos(2x) \] \[ I_2 \cdot \frac{1}{2} = -\frac{1}{2} e^x \cos(2x) \] \[ I_2 = -e^x \cos(2x) \] ### Step 5: Combine results Now substituting \( I_1 \) and \( I_2 \) back into the integral: \[ \int e^x \sin x \cos x \cos 2x \cos 4x \, dx = \frac{1}{4} \left( -\frac{1}{5} e^x \cos(6x) - e^x \cos(2x) \right) \] ### Step 6: Final result Thus, the final result is: \[ \int e^x \sin x \cos x \cos 2x \cos 4x \, dx = -\frac{1}{20} e^x \cos(6x) - \frac{1}{4} e^x \cos(2x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

intsinxcosxcos2xcos4xdx

intcos2xcos4xdx

int cos2x*cos4x*cos6xdx

int e^(-x)cos2x cos4xdx

int sin3xcos6xdx

intsin^2xcos2xdx

intsin7xcos3xdx=

Evaluate the following integrals: inte^(x)cos2xcos4xdx

int5cos8xcos 2xdx=

Evaluate the following integrals: intcos2xcos4xcos6xdx