Home
Class 12
MATHS
l=int(e^(x))/((e^(x)+1)^(1//4))dx is equ...

`l=int(e^(x))/((e^(x)+1)^(1//4))dx` is equal to

A

`(e^(2x)-e^(-2x))/(2)+c`

B

`(e^(2x)+e^(-2x))/(2)+c`

C

`(e^(x)-e^(2x))/(2)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{e^x}{(e^x + 1)^{1/4}} \, dx \), we will use substitution. Here’s the step-by-step solution: ### Step 1: Substitution Let \( t = e^x + 1 \). Then, we differentiate both sides to find \( dx \): \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x} \] Since \( e^x = t - 1 \), we can substitute this back into our expression for \( dx \): \[ dx = \frac{dt}{t - 1} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral \( I \): \[ I = \int \frac{e^x}{(e^x + 1)^{1/4}} \, dx = \int \frac{t - 1}{t^{1/4}} \cdot \frac{dt}{t - 1} \] This simplifies to: \[ I = \int \frac{t - 1}{t^{1/4}} \cdot \frac{dt}{t - 1} = \int t^{3/4} \, dt \] ### Step 3: Integrate Now we can integrate \( t^{3/4} \): \[ I = \int t^{3/4} \, dt = \frac{t^{3/4 + 1}}{3/4 + 1} + C = \frac{t^{7/4}}{7/4} + C = \frac{4}{7} t^{7/4} + C \] ### Step 4: Substitute Back Now, we substitute back \( t = e^x + 1 \): \[ I = \frac{4}{7} (e^x + 1)^{7/4} + C \] ### Final Answer Thus, the integral \( I \) is: \[ I = \frac{4}{7} (e^x + 1)^{7/4} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int(e^(x)dx)/(e^(x)-1)

int sqrt((e^(x)-1)/(e^(x)+1))dx is equal to

int(e^x dx)/(1-e^(x))

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int(e^(x))/((1+e^(x))(2+e^(x)))dx

int(e^(4x)-1)/(e^(2x))dx

int(e^(-x))/(1+e^(x))dx=

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int(1)/((e^(x)+e^(-x))^(2))dx is equal to

int(3e^(x)-4)/(e^(x)+1)dx=