Home
Class 12
MATHS
int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)d...

`int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx` equals to

A

`logtan^(2)x+sqrt(tanx)+c`

B

`logtan^(2)x+(1)/(2sqrt(tanx))+c`

C

`log|tanx|+2sqrt(tanx)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{(1+\sqrt{\tan x})(1+\tan^2 x)}{2\tan x} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand We know from trigonometric identities that \[ 1 + \tan^2 x = \sec^2 x. \] Thus, we can rewrite the integrand as: \[ \frac{(1+\sqrt{\tan x}) \sec^2 x}{2 \tan x}. \] ### Step 2: Use substitution Let \( t = \tan x \). Then, the derivative of \( t \) is: \[ dt = \sec^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{\sec^2 x}. \] Substituting \( t \) into the integral gives: \[ \int \frac{(1+\sqrt{t}) \sec^2 x}{2t} \cdot \frac{dt}{\sec^2 x} = \int \frac{(1+\sqrt{t})}{2t} \, dt. \] ### Step 3: Split the integral Now, we can split the integral into two parts: \[ \int \frac{1}{2t} \, dt + \int \frac{\sqrt{t}}{2t} \, dt = \int \frac{1}{2t} \, dt + \int \frac{1}{2\sqrt{t}} \, dt. \] ### Step 4: Integrate each part 1. For the first integral: \[ \int \frac{1}{2t} \, dt = \frac{1}{2} \ln |t| + C_1. \] 2. For the second integral: \[ \int \frac{1}{2\sqrt{t}} \, dt = \int \frac{1}{2} t^{-1/2} \, dt = \frac{1}{2} \cdot \frac{t^{1/2}}{1/2} + C_2 = \sqrt{t} + C_2. \] ### Step 5: Combine the results Combining both results, we have: \[ \frac{1}{2} \ln |t| + \sqrt{t} + C, \] where \( C = C_1 + C_2 \). ### Step 6: Substitute back for \( t \) Recall that \( t = \tan x \). Therefore, substituting back gives: \[ \frac{1}{2} \ln |\tan x| + \sqrt{\tan x} + C. \] ### Final Result Thus, the integral evaluates to: \[ \int \frac{(1+\sqrt{\tan x})(1+\tan^2 x)}{2\tan x} \, dx = \frac{1}{2} \ln |\tan x| + \sqrt{\tan x} + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int((1+tanx)/(1-tanx))dx

int ((1+tanx)/(1-tanx))dx

Knowledge Check

  • int(1+tan^(2)x)/(1+tanx)dx=

    A
    `sinx+cosx+c`
    B
    `cosx-sinx+c`
    C
    `log(1+tanx)+c`
    D
    `log(cosx+sinx)+c`
  • int((1-tanx)/(1+tanx))^(2)dx=

    A
    `-(tan((pi)/(4)-x)+x)+c`
    B
    `-(tan((pi)/(4)+x)+x)+c`
    C
    `tan((pi)/(4)-x)+x+c`
    D
    `tan((pi)/(4)+x)+x+c`
  • int((1+tan)/(1-tanx))^(2)dx=

    A
    `(1)/(3)log[(cosx-sinx)]^(3)+c`
    B
    `tan(x-(pi)/(4))-x+c`
    C
    `tan((pi)/(4)+x)-x+c`
    D
    `sec^(2)((pi)/(4)+x)+c`
  • Similar Questions

    Explore conceptually related problems

    int(sqrt(tanx))/(sin2x)dx=

    int(sqrt(tanx))/(sin2x)dx=

    int(1-tanx)/(1+tanx)dx=

    int(secx tanx)/(9-16 tan^2x)dx=

    inttan^(-1)((2tanx)/(1-tan^(2)x))dx=