Home
Class 12
MATHS
l=int(cos^(4)x+1)/(cotx-tanx)dx is equal...

`l=int(cos^(4)x+1)/(cotx-tanx)dx` is equal to

A

`-(1)/(32)[cos^(2)2x+4cos2x+10log_(e)cos2x]+c`

B

`(1)/(32)[cos^(2)2x-4cos2x+10log_(e)cos2x]+c`

C

`(1)/(32)[cos^(2)2x-4cos2x-10log_(e)cos2x]+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\cos^4 x + 1}{\cot x - \tan x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the denominator \( \cot x - \tan x \): \[ \cot x = \frac{\cos x}{\sin x}, \quad \tan x = \frac{\sin x}{\cos x} \] Thus, \[ \cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} \] ### Step 2: Substitute in the Integral Substituting this back into the integral, we have: \[ I = \int \frac{\cos^4 x + 1}{\frac{\cos^2 x - \sin^2 x}{\sin x \cos x}} \, dx = \int \frac{(\cos^4 x + 1) \sin x \cos x}{\cos^2 x - \sin^2 x} \, dx \] ### Step 3: Simplify the Numerator Next, we can simplify the numerator: \[ \cos^4 x + 1 = \cos^4 x + \sin^2 x + \cos^2 x - \sin^2 x = (\cos^2 x + 1)(\cos^2 x - \sin^2 x) \] This allows us to rewrite the integral as: \[ I = \int \frac{(\cos^2 x + 1)(\cos^2 x - \sin^2 x) \sin x \cos x}{\cos^2 x - \sin^2 x} \, dx \] The \( \cos^2 x - \sin^2 x \) terms cancel: \[ I = \int (\cos^2 x + 1) \sin x \cos x \, dx \] ### Step 4: Use a Trigonometric Identity Using the identity \( \sin x \cos x = \frac{1}{2} \sin 2x \), we can rewrite the integral: \[ I = \int \left(\cos^2 x + 1\right) \frac{1}{2} \sin 2x \, dx \] ### Step 5: Split the Integral Now we can split the integral: \[ I = \frac{1}{2} \int \cos^2 x \sin 2x \, dx + \frac{1}{2} \int \sin 2x \, dx \] ### Step 6: Solve Each Integral 1. For the integral \( \int \sin 2x \, dx \): \[ \int \sin 2x \, dx = -\frac{1}{2} \cos 2x + C \] 2. For the integral \( \int \cos^2 x \sin 2x \, dx \), we can use substitution: Let \( u = \cos x \), then \( du = -\sin x \, dx \). Thus, \[ \int \cos^2 x \sin 2x \, dx = \int u^2 (-2u) \, du = -2 \int u^3 \, du = -\frac{2}{4} u^4 + C = -\frac{1}{2} \cos^4 x + C \] ### Step 7: Combine Results Combining both results: \[ I = \frac{1}{2} \left(-\frac{1}{2} \cos^4 x + C\right) + \frac{1}{2} \left(-\frac{1}{2} \cos 2x + C\right) \] This simplifies to: \[ I = -\frac{1}{4} \cos^4 x - \frac{1}{4} \cos 2x + C \] ### Final Answer Thus, the final answer for the integral \( I \) is: \[ I = -\frac{1}{4} \cos^4 x - \frac{1}{4} \cos 2x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int(cos 4x-1)/(cot x-tanx)dx is equal to

int(cos4x-1)/(cotx-tanx)dx is equal to

int(1+cos 4x)/(cotx-tanx)dx=

(1+cos4x)/(cotx-tanx)

inte^(-x)(1-tanx)secx dx is equal to

If int(cos 4x+1)/(cotx-tanx)dx=a cos 4x+c, then a=

"If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x+B, " then "

int(sqrt(tanx)+sqrt(cotx))dx is equal to

If int(cos4x+1)/(cotx-tanx)dx=kcos4x+c , then k= (A) -1/4 (B) -1/2 (C) -1/8 (D) none of these