Home
Class 12
MATHS
If int(sec^(2)x-2010)/(sin^(2010)x)dx=(P...

If `int(sec^(2)x-2010)/(sin^(2010)x)dx=(P(x))/(sin^(2010) x)+C`, then value of `P((pi)/(3))` is

A

0

B

`(1)/(sqrt(3))`

C

`sqrt3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sec^2 x - 2010}{\sin^{2010} x} \, dx = \frac{P(x)}{\sin^{2010} x} + C, \] we need to find the function \( P(x) \) and then evaluate \( P\left(\frac{\pi}{3}\right) \). ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sec^2 x - 2010}{\sin^{2010} x} \, dx. \] ### Step 2: Split the Integral We can split the integral into two parts: \[ I = \int \frac{\sec^2 x}{\sin^{2010} x} \, dx - 2010 \int \frac{1}{\sin^{2010} x} \, dx. \] ### Step 3: Simplify \(\sec^2 x\) Recall that \(\sec^2 x = \frac{1}{\cos^2 x}\) and \(\sin x = \cos x \cdot \tan x\). Thus, we can rewrite the first integral: \[ \int \frac{\sec^2 x}{\sin^{2010} x} \, dx = \int \frac{1}{\cos^2 x \cdot \sin^{2010} x} \, dx. \] ### Step 4: Use the Identity Using the identity \(\frac{1}{\sin x} = \csc x\), we can express the integrals in terms of \(\csc\): \[ I = \int \csc^{2010} x \sec^2 x \, dx - 2010 \int \csc^{2010} x \, dx. \] ### Step 5: Integration by Parts For the integral \(\int \csc^{2010} x \sec^2 x \, dx\), we can use integration by parts or a known result. The result of this integral is: \[ \int \csc^{2010} x \sec^2 x \, dx = \frac{1}{2010} \csc^{2009} x + C. \] ### Step 6: Combine the Results Now we combine the results: \[ I = \frac{1}{2010} \csc^{2009} x - 2010 \int \csc^{2010} x \, dx. \] ### Step 7: Identify \(P(x)\) We can express the integral in the form required: \[ I = \frac{P(x)}{\sin^{2010} x} + C. \] From our calculations, we can deduce that: \[ P(x) = \frac{1}{2010} \csc^{2009} x - 2010 \int \csc^{2010} x \, dx. \] ### Step 8: Evaluate \(P\left(\frac{\pi}{3}\right)\) Now we need to find \(P\left(\frac{\pi}{3}\right)\): 1. Calculate \(\csc\left(\frac{\pi}{3}\right)\): \[ \csc\left(\frac{\pi}{3}\right) = \frac{1}{\sin\left(\frac{\pi}{3}\right)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}. \] 2. Substitute into \(P(x)\): \[ P\left(\frac{\pi}{3}\right) = \frac{1}{2010} \left(\frac{2}{\sqrt{3}}\right)^{2009} - 2010 \int \csc^{2010}\left(\frac{\pi}{3}\right) \, dx. \] ### Final Calculation Since we only need \(P\left(\frac{\pi}{3}\right)\), we can simplify: \[ P\left(\frac{\pi}{3}\right) = 10 \cdot \frac{2^{2009}}{3^{1004.5}}. \] Thus, the final value of \(P\left(\frac{\pi}{3}\right)\) is: \[ P\left(\frac{\pi}{3}\right) = 10 \cdot \frac{2^{2009}}{3^{1004.5}}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)|20 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE LEVEL-II)|4 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

If int (cosec ^(2)x-2010)/(cos ^(2010)x)dx = =(f (x))/((g (x ))^(2010))+C, where f ((pi)/(4))=1, then the number of solution of the equation (f(x))/(g (x))={x} in [0,2pi] is/are: (where {.} represents fractional part function)

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

If the product of all solutions of the equation ((100)x)/(2010)=(2009)^(log_(x)(2010)) form as (m)/(n) then the value of (m-n) is

If f'(x)=(x-a)^(2010)(x-b)^(2009) and agtb , then

The value of int_(0)^(pi) x sin^(3) x dx is

If int_(0)^(pi)x f(sin x) dx = a int_(0)^(pi)f (sin x) dx , then a =

If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(-1)(sinx)+C then p+2q+r is equql to:

int_(8)^(2010)(cos^(2018)x)/(cos^(2018)x+cos(2018-x)^(2018))dx

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

FIITJEE-INDEFINTE INTEGRAL-ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-I)
  1. int(log(1+cosx)-xtan((x)/(2)))dx=

    Text Solution

    |

  2. int(x^6(x+1)dx)/(sqrt(5x^(10)+6x^5+1))=

    Text Solution

    |

  3. If int(sec^(2)x-2010)/(sin^(2010)x)dx=(P(x))/(sin^(2010) x)+C, then va...

    Text Solution

    |

  4. The value of int(xtanxsecx)/((tanx-x)^(2))dx is equal to

    Text Solution

    |

  5. If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan...

    Text Solution

    |

  6. If int\ x ln(1+1/x)\ dx = p(x)\ ln(1+1/x)+1/2 x - 1/2 ln(1+x) + c, c b...

    Text Solution

    |

  7. int0^1T a n^(- 1)((2x)/(1-x^2))dx=

    Text Solution

    |

  8. intsqrt(x)dx is equal to

    Text Solution

    |

  9. If int((2x+1)dx)/(x^(4)+2x^(3)+x^(2)-1)=Aln|(x^(2)+x+1)/(x^(2)+x-1)|+C...

    Text Solution

    |

  10. Let l(n)=int(0)^(1){P(x^(2))+P(x^(2)-1)}^(n)dx. If (k+1)l(n)=2k(1+l(n-...

    Text Solution

    |

  11. int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

    Text Solution

    |

  12. Evaluate: int(x^2-1)/((x^4+3x^2+1)tan^(-1)(x+1/x))dx

    Text Solution

    |

  13. int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

    Text Solution

    |

  14. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  15. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  16. 4 int (sqrt(a^(6)+x^(8)))/(x) dx is equal to

    Text Solution

    |

  17. intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e...

    Text Solution

    |

  18. The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

    Text Solution

    |

  19. int((sin2x)^(1//3)d(root(3)(tanx)))/(sin^(2//3)x+cos^(2//3)x) is equal...

    Text Solution

    |

  20. int (dx)/(x^(2)(x^(4)+1))is

    Text Solution

    |