Home
Class 12
MATHS
Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+...

Let `f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx` be an increasing function of `x""inRandbinR`, then a can take value(s)

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = [b^2 + (a-1)b + 2]x - \int (\sin^2 x + \cos^4 x) \, dx \) and determine the values of \( a \) for which \( f(x) \) is an increasing function. ### Step 1: Differentiate \( f(x) \) To determine if \( f(x) \) is increasing, we need to find its derivative \( f'(x) \): \[ f'(x) = b^2 + (a-1)b + 2 - (\sin^2 x + \cos^4 x) \] The term \( \int (\sin^2 x + \cos^4 x) \, dx \) differentiates to \( \sin^2 x + \cos^4 x \). ### Step 2: Set the condition for increasing function Since \( f(x) \) is an increasing function, we require: \[ f'(x) > 0 \] This implies: \[ b^2 + (a-1)b + 2 - (\sin^2 x + \cos^4 x) > 0 \] ### Step 3: Analyze \( \sin^2 x + \cos^4 x \) Next, we need to find the range of \( \sin^2 x + \cos^4 x \). We can express \( \sin^2 x \) in terms of \( \cos^2 x \): \[ \sin^2 x = 1 - \cos^2 x \] Thus, \[ \sin^2 x + \cos^4 x = 1 - \cos^2 x + \cos^4 x \] Let \( y = \cos^2 x \), then: \[ \sin^2 x + \cos^4 x = 1 - y + y^2 \] This is a quadratic function in \( y \). ### Step 4: Find the minimum value of \( 1 - y + y^2 \) The vertex of the quadratic \( y^2 - y + 1 \) occurs at: \[ y = -\frac{b}{2a} = \frac{1}{2} \] Substituting \( y = \frac{1}{2} \): \[ 1 - \frac{1}{2} + \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \] Thus, the minimum value of \( \sin^2 x + \cos^4 x \) is \( \frac{3}{4} \). ### Step 5: Substitute the minimum value into the inequality Now substituting the minimum value back into our inequality: \[ b^2 + (a-1)b + 2 - \frac{3}{4} > 0 \] This simplifies to: \[ b^2 + (a-1)b + \frac{5}{4} > 0 \] ### Step 6: Analyze the quadratic inequality For the quadratic \( b^2 + (a-1)b + \frac{5}{4} \) to be always positive, the discriminant must be less than zero: \[ D = (a-1)^2 - 4 \cdot 1 \cdot \frac{5}{4} < 0 \] This simplifies to: \[ (a-1)^2 - 5 < 0 \] \[ (a-1)^2 < 5 \] ### Step 7: Solve the inequality Taking square roots: \[ -\sqrt{5} < a - 1 < \sqrt{5} \] Thus, \[ 1 - \sqrt{5} < a < 1 + \sqrt{5} \] ### Step 8: Approximate the values Calculating \( 1 - \sqrt{5} \) and \( 1 + \sqrt{5} \): - \( \sqrt{5} \approx 2.236 \) - Therefore, \( 1 - \sqrt{5} \approx -1.236 \) and \( 1 + \sqrt{5} \approx 3.236 \). ### Conclusion The values of \( a \) that make \( f(x) \) an increasing function are: \[ a \in (1 - \sqrt{5}, 1 + \sqrt{5}) \approx (-1.236, 3.236) \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS|4 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-I)|51 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)={b^(2)+(a-1)b+2}x-int(sin^(2)x+cos^(4)x)dx be an increasing function of xepsilonR and bepsilonR , then a can take value (s)

f(x)=[-c^(2)+(b-1)c-2)]x+int(sin^(2)x+cos^(4)x)dx If f(x) be an increasing function of x AA x in R then all possible values of b if (c in R)

Let f(x)={b^(2)+(a-1)b-(1)/(4)}x+int_(0)^(x)(sin^(4)theta+cos^(4)theta)d theta If f(x) be a non- decreasing function AA x in R and AA b in R then "a" can belong to

int(a sin^(3)x-b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(a sin^(3)x+b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(1)/(4sin^(2)x+4sin x cos x+5cos^(2)x)dx

Let int(xsinx)/((x cos x-sin x)^(2))dx then

Let f(x) = inte^(x^(2))(x-2)(x-3)(x-4)dx then f increases on

Let F(x)=(1)/(2)int(sin x+cos x)/(e^(-x)+sin x)dx and F(0)=1 then F(x) is

Let f(x)=int e^(x^(2))(x-2)(x-3)(x-4)dx then f increases on (k,k+1) then k is

FIITJEE-INDEFINTE INTEGRAL-ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)
  1. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  2. If I=int(sinx-cosx)/((sinx=cosx)sqrt(sinxcosx+sin^(2)cos^(2))x)dx=cose...

    Text Solution

    |

  3. For x ^ 2 ne n pi + 1, n in N ( the set of natural numb...

    Text Solution

    |

  4. Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx be an increasing f...

    Text Solution

    |

  5. If int((1)/(sin^(2)x))log(cosx+cos2x)dx=cotxlog(cosx+sqrt(cos2x)+P(cos...

    Text Solution

    |

  6. l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to

    Text Solution

    |

  7. I=inttan^(2)(2theta)d""theta is equal to

    Text Solution

    |

  8. l(1)=int2^(x)dx=p(x)+c(1)andl(2)=int((1)/(2))^(x)dx=m(x)+c(1) then p(x...

    Text Solution

    |

  9. If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c the...

    Text Solution

    |

  10. int((1+x^(2))(2+x^2))/((xco sx+sinx)^(4))dx equals

    Text Solution

    |

  11. int(dx)/((1+sqrt(x))^8)=

    Text Solution

    |

  12. Iff^(prime)(x)=1/(-x+sqrt(x^2+1))a n df(0)=(1+sqrt(2))/2t h e nf(1) i...

    Text Solution

    |

  13. If int(sinx)/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+c then

    Text Solution

    |

  14. If intxlog(1+x^(2))dx=A(x).log(1+x^(2))+B(x)+c, then

    Text Solution

    |

  15. If int(sin3theta+sintheta)e^(sintheta)costhetad theta=(Asin^3theta+Bco...

    Text Solution

    |

  16. If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c, then

    Text Solution

    |

  17. int(dx)/(x^(5//6)(1+5x^(1//3))sqrt(1+4x^(1//3)))

    Text Solution

    |

  18. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Psqrt(1-9x^(2))+Q(cos^(-...

    Text Solution

    |

  19. If int(dx)/(x^(22)(x^7-6))=A{ln(p)^6+9p^2-2p^3-18 p}+c, then

    Text Solution

    |

  20. intx^(5)cos^(2)logsqrtxdx=

    Text Solution

    |