Home
Class 12
MATHS
l(1)=int2^(x)dx=p(x)+c(1)andl(2)=int((1)...

`l_(1)=int2^(x)dx=p(x)+c_(1)andl_(2)=int((1)/(2))^(x)dx=m(x)+c_(1)` then p(x)-m(x) is equal to

A

`{log_(e)(2)}(2^(x)-2^(-x))`

B

`{log_(e)(2)}(2^(x)+2^(-x))`

C

`(1)/(log_(e)2)(2^(x)+2^(-x))`

D

`(log_(2)e)(2^(x)+2^(-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the difference \( p(x) - m(x) \) where: - \( L_1 = \int 2^x \, dx = p(x) + c_1 \) - \( L_2 = \int \frac{1}{2^x} \, dx = m(x) + c_1 \) ### Step 1: Find \( p(x) \) We start with the integral \( L_1 = \int 2^x \, dx \). Using the formula for the integral of an exponential function, we have: \[ \int a^x \, dx = \frac{a^x}{\ln a} + C \] For \( a = 2 \): \[ L_1 = \int 2^x \, dx = \frac{2^x}{\ln 2} + C_1 \] Thus, we can express \( p(x) \) as: \[ p(x) = \frac{2^x}{\ln 2} \] ### Step 2: Find \( m(x) \) Next, we find \( L_2 = \int \frac{1}{2^x} \, dx \). We can rewrite \( \frac{1}{2^x} \) as \( 2^{-x} \): \[ L_2 = \int 2^{-x} \, dx \] Using the same formula for the integral of an exponential function: \[ L_2 = \int 2^{-x} \, dx = \frac{2^{-x}}{\ln 2} + C_1 \] Thus, we can express \( m(x) \) as: \[ m(x) = \frac{2^{-x}}{\ln 2} \] ### Step 3: Calculate \( p(x) - m(x) \) Now, we need to find \( p(x) - m(x) \): \[ p(x) - m(x) = \frac{2^x}{\ln 2} - \frac{2^{-x}}{\ln 2} \] Factoring out \( \frac{1}{\ln 2} \): \[ p(x) - m(x) = \frac{1}{\ln 2} \left( 2^x - 2^{-x} \right) \] ### Final Result Thus, the final expression for \( p(x) - m(x) \) is: \[ p(x) - m(x) = \frac{1}{\ln 2} \left( 2^x - 2^{-x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS|4 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-I)|51 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)+1)/(x)dx is equal to -

int(sin^(2)x)/(1+cos2x)dx=k (tan x-x)+c then k is equal to

int(1+x^(2))/(x)dx is equal to:

If l_(1)=int sin^(-1)x dx and l_(2) =int sin^(-1)sqrt(1-x^(2))dx , then

int(dx)/(x(x^(2)+1)) is equal to

int_(-1)^(1) (dx) / (x^(2)+2x+5) is equal to

Let l_(1)=int_(0)^(1)(e^(x))/(1+x)dx and l_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx. "Then"(l_(1))/(l_(2)) is equal to

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

FIITJEE-INDEFINTE INTEGRAL-ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)
  1. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  2. If I=int(sinx-cosx)/((sinx=cosx)sqrt(sinxcosx+sin^(2)cos^(2))x)dx=cose...

    Text Solution

    |

  3. For x ^ 2 ne n pi + 1, n in N ( the set of natural numb...

    Text Solution

    |

  4. Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx be an increasing f...

    Text Solution

    |

  5. If int((1)/(sin^(2)x))log(cosx+cos2x)dx=cotxlog(cosx+sqrt(cos2x)+P(cos...

    Text Solution

    |

  6. l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to

    Text Solution

    |

  7. I=inttan^(2)(2theta)d""theta is equal to

    Text Solution

    |

  8. l(1)=int2^(x)dx=p(x)+c(1)andl(2)=int((1)/(2))^(x)dx=m(x)+c(1) then p(x...

    Text Solution

    |

  9. If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c the...

    Text Solution

    |

  10. int((1+x^(2))(2+x^2))/((xco sx+sinx)^(4))dx equals

    Text Solution

    |

  11. int(dx)/((1+sqrt(x))^8)=

    Text Solution

    |

  12. Iff^(prime)(x)=1/(-x+sqrt(x^2+1))a n df(0)=(1+sqrt(2))/2t h e nf(1) i...

    Text Solution

    |

  13. If int(sinx)/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+c then

    Text Solution

    |

  14. If intxlog(1+x^(2))dx=A(x).log(1+x^(2))+B(x)+c, then

    Text Solution

    |

  15. If int(sin3theta+sintheta)e^(sintheta)costhetad theta=(Asin^3theta+Bco...

    Text Solution

    |

  16. If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c, then

    Text Solution

    |

  17. int(dx)/(x^(5//6)(1+5x^(1//3))sqrt(1+4x^(1//3)))

    Text Solution

    |

  18. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Psqrt(1-9x^(2))+Q(cos^(-...

    Text Solution

    |

  19. If int(dx)/(x^(22)(x^7-6))=A{ln(p)^6+9p^2-2p^3-18 p}+c, then

    Text Solution

    |

  20. intx^(5)cos^(2)logsqrtxdx=

    Text Solution

    |