Home
Class 12
MATHS
If intxlog(1+x^(2))dx=A(x).log(1+x^(2))+...

If `intxlog(1+x^(2))dx=A(x).log(1+x^(2))+B(x)+c`, then

A

`A(x)=((1+x^(2)))/(2)`

B

`B(x)=((1+x^(2)))/(2)`

C

`A(x)=-((1+x^(2)))/(2)`

D

`B(x)=-((1+x^(2)))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x \log(1 + x^2) \, dx \) and express it in the form \( A(x) \log(1 + x^2) + B(x) + C \), we will use integration by parts. Here’s the step-by-step solution: ### Step 1: Set up the integration by parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \log(1 + x^2) \) (which we will differentiate) - \( dv = x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now we differentiate \( u \) and integrate \( dv \): - \( du = \frac{2x}{1 + x^2} \, dx \) - \( v = \frac{x^2}{2} \) ### Step 3: Apply the integration by parts formula Now we apply the integration by parts: \[ I = \int x \log(1 + x^2) \, dx = \frac{x^2}{2} \log(1 + x^2) - \int \frac{x^2}{2} \cdot \frac{2x}{1 + x^2} \, dx \] This simplifies to: \[ I = \frac{x^2}{2} \log(1 + x^2) - \int \frac{x^3}{1 + x^2} \, dx \] ### Step 4: Simplify the integral The integral \( \int \frac{x^3}{1 + x^2} \, dx \) can be simplified: \[ \frac{x^3}{1 + x^2} = x - \frac{x}{1 + x^2} \] Thus, we rewrite the integral: \[ I = \frac{x^2}{2} \log(1 + x^2) - \int x \, dx + \int \frac{x}{1 + x^2} \, dx \] ### Step 5: Evaluate the remaining integrals Now we evaluate the remaining integrals: 1. \( \int x \, dx = \frac{x^2}{2} \) 2. For \( \int \frac{x}{1 + x^2} \, dx \), we can use the substitution \( t = 1 + x^2 \), \( dt = 2x \, dx \): \[ \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \log(1 + x^2) \] Putting it all together, we have: \[ I = \frac{x^2}{2} \log(1 + x^2) - \frac{x^2}{2} + \frac{1}{2} \log(1 + x^2) + C \] Combine the logarithmic terms: \[ I = \left(\frac{x^2}{2} + \frac{1}{2}\right) \log(1 + x^2) - \frac{x^2}{2} + C \] ### Step 6: Identify \( A(x) \) and \( B(x) \) From the expression, we can identify: - \( A(x) = \frac{x^2 + 1}{2} \) - \( B(x) = -\frac{x^2}{2} \) ### Final Result Thus, we have: \[ \int x \log(1 + x^2) \, dx = A(x) \log(1 + x^2) + B(x) + C \] where \( A(x) = \frac{x^2 + 1}{2} \) and \( B(x) = -\frac{x^2}{2} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS|4 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-I)|51 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

intxlog(1+1/x)dx

If int x log (1+x^(2))dx= phi (x) log (1+x^(2))+x(Psi)+C , then

If int (dx)/(x-x^(3))=A log |(x^(2))/(1-x^(2))|+c then A= (A) 2 (B) 1/2 (C) 2/3 (D) 1/3

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+dx+C, then

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+Ax+C then (a)f(x)=(1)/(2)x^(2)(b)g(x)=log x(c)A=1(d) none of these

int(ln x)/(x^(3))dx=A(ln x)/(x^(2))+(B)/(x^(2))+c

If int e^(x)(b log(x^(2)+1)+(cx)/(x^(2)+1))dx=(c)/(2)(e^(x)log(x^(2)+1)) ,then the values of b and c can be

If intx log (1+(1)/(x))dx =f(x).log_(e)(x+1)+g(x)log_(e)x^(2)xLx+C , then

int(x-1)/((x-3)(x-2))dx=A ln(x-3)+B ln(x-2)+c , then find the value of A+B

FIITJEE-INDEFINTE INTEGRAL-ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)
  1. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  2. If I=int(sinx-cosx)/((sinx=cosx)sqrt(sinxcosx+sin^(2)cos^(2))x)dx=cose...

    Text Solution

    |

  3. For x ^ 2 ne n pi + 1, n in N ( the set of natural numb...

    Text Solution

    |

  4. Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx be an increasing f...

    Text Solution

    |

  5. If int((1)/(sin^(2)x))log(cosx+cos2x)dx=cotxlog(cosx+sqrt(cos2x)+P(cos...

    Text Solution

    |

  6. l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to

    Text Solution

    |

  7. I=inttan^(2)(2theta)d""theta is equal to

    Text Solution

    |

  8. l(1)=int2^(x)dx=p(x)+c(1)andl(2)=int((1)/(2))^(x)dx=m(x)+c(1) then p(x...

    Text Solution

    |

  9. If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c the...

    Text Solution

    |

  10. int((1+x^(2))(2+x^2))/((xco sx+sinx)^(4))dx equals

    Text Solution

    |

  11. int(dx)/((1+sqrt(x))^8)=

    Text Solution

    |

  12. Iff^(prime)(x)=1/(-x+sqrt(x^2+1))a n df(0)=(1+sqrt(2))/2t h e nf(1) i...

    Text Solution

    |

  13. If int(sinx)/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+c then

    Text Solution

    |

  14. If intxlog(1+x^(2))dx=A(x).log(1+x^(2))+B(x)+c, then

    Text Solution

    |

  15. If int(sin3theta+sintheta)e^(sintheta)costhetad theta=(Asin^3theta+Bco...

    Text Solution

    |

  16. If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c, then

    Text Solution

    |

  17. int(dx)/(x^(5//6)(1+5x^(1//3))sqrt(1+4x^(1//3)))

    Text Solution

    |

  18. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Psqrt(1-9x^(2))+Q(cos^(-...

    Text Solution

    |

  19. If int(dx)/(x^(22)(x^7-6))=A{ln(p)^6+9p^2-2p^3-18 p}+c, then

    Text Solution

    |

  20. intx^(5)cos^(2)logsqrtxdx=

    Text Solution

    |