Home
Class 12
MATHS
If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2...

If `int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c`, then

A

`B=-(1)/(2)`

B

A=1

C

`f(x)=|x^(2)+2x+2|`

D

`B=-(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{3x + 4}{x^3 - 2x - 4} \, dx \) and express it in the form \( A \log |x - 2| + B \log(f(x)) + C \), we will follow these steps: ### Step 1: Factor the Denominator First, we need to factor the denominator \( x^3 - 2x - 4 \). We will check for possible rational roots using the Rational Root Theorem. 1. **Check for roots**: Let's test \( x = 2 \): \[ 2^3 - 2(2) - 4 = 8 - 4 - 4 = 0 \] Thus, \( x - 2 \) is a factor. 2. **Perform polynomial long division** to divide \( x^3 - 2x - 4 \) by \( x - 2 \): \[ x^3 - 2x - 4 = (x - 2)(x^2 + 2x + 2) \] ### Step 2: Set Up Partial Fraction Decomposition Now we can express the integrand using partial fractions: \[ \frac{3x + 4}{(x - 2)(x^2 + 2x + 2)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 2x + 2} \] ### Step 3: Solve for Coefficients A, B, and C Multiply through by the denominator to eliminate the fractions: \[ 3x + 4 = A(x^2 + 2x + 2) + (Bx + C)(x - 2) \] Expanding the right side: \[ 3x + 4 = Ax^2 + 2Ax + 2A + Bx^2 - 2Bx + Cx - 2C \] Combine like terms: \[ 3x + 4 = (A + B)x^2 + (2A - 2B + C)x + (2A - 2C) \] Now, equate coefficients: 1. \( A + B = 0 \) (coefficient of \( x^2 \)) 2. \( 2A - 2B + C = 3 \) (coefficient of \( x \)) 3. \( 2A - 2C = 4 \) (constant term) ### Step 4: Solve the System of Equations From \( A + B = 0 \), we have \( B = -A \). Substituting \( B = -A \) into the other equations: 1. \( 2A - 2(-A) + C = 3 \) simplifies to \( 4A + C = 3 \) 2. \( 2A - 2C = 4 \) Now we have: 1. \( C = 3 - 4A \) 2. Substitute \( C \) into \( 2A - 2(3 - 4A) = 4 \): \[ 2A - 6 + 8A = 4 \implies 10A = 10 \implies A = 1 \] Thus, \( B = -1 \) and \( C = -1 \). ### Step 5: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( \frac{1}{x - 2} - \frac{x + 1}{x^2 + 2x + 2} \right) dx \] ### Step 6: Integrate Each Term 1. For \( \frac{1}{x - 2} \): \[ \int \frac{1}{x - 2} \, dx = \log |x - 2| \] 2. For \( \frac{x + 1}{x^2 + 2x + 2} \), use substitution: Let \( u = x^2 + 2x + 2 \), then \( du = (2x + 2)dx \) or \( dx = \frac{du}{2(x + 1)} \): \[ \int \frac{x + 1}{x^2 + 2x + 2} \, dx = \frac{1}{2} \log |x^2 + 2x + 2| \] ### Step 7: Combine Results Thus, the integral becomes: \[ \log |x - 2| - \frac{1}{2} \log |x^2 + 2x + 2| + C \] ### Final Form This can be rewritten as: \[ \log |x - 2| + \log |(x^2 + 2x + 2)^{-1/2}| + C \] ### Conclusion Comparing with the given form \( A \log |x - 2| + B \log(f(x)) + C \): - \( A = 1 \) - \( B = -\frac{1}{2} \) - \( f(x) = |x^2 + 2x + 2| \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS -I|1 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS|4 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-I)|51 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

int(x^(3))/((x^(2)-4))dx

int(x^(2)+x^(-4))/(x^(3)-x^(-3))dx=

int(x^(3))/((x+2)^(4))dx

int((3)/(x^(2))-4x)dx

int(2^(x)+3^(x))/(4^(x))dx=+c

int(x^(4)+3x^(2)+1)/(x^(3))dx

int(x^(3)+4x^(2)-2)/(x^(2))dx

If int(1)/((x+1)(x-2))dx=Alog_(e)(x+1)+Blog_(e)(x-2)+C , then A + B = ?

"int(x^(3)+2x^(2)-4)/(x^(2))dx

If : int(1-x^(7))/(x(1+x^(7)))dx=a.log|x|+b.log|x^(7)+1|+c, then : (a, b)-=

FIITJEE-INDEFINTE INTEGRAL-ASSIGNMENT PROBLEMS (OBJECTIVE LEVEL-II)
  1. Let f(x)=1/(4-3cos^2x+5sin^2x) and if its antiderivative F(x)=(1/3) ta...

    Text Solution

    |

  2. If I=int(sinx-cosx)/((sinx=cosx)sqrt(sinxcosx+sin^(2)cos^(2))x)dx=cose...

    Text Solution

    |

  3. For x ^ 2 ne n pi + 1, n in N ( the set of natural numb...

    Text Solution

    |

  4. Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx be an increasing f...

    Text Solution

    |

  5. If int((1)/(sin^(2)x))log(cosx+cos2x)dx=cotxlog(cosx+sqrt(cos2x)+P(cos...

    Text Solution

    |

  6. l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to

    Text Solution

    |

  7. I=inttan^(2)(2theta)d""theta is equal to

    Text Solution

    |

  8. l(1)=int2^(x)dx=p(x)+c(1)andl(2)=int((1)/(2))^(x)dx=m(x)+c(1) then p(x...

    Text Solution

    |

  9. If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c the...

    Text Solution

    |

  10. int((1+x^(2))(2+x^2))/((xco sx+sinx)^(4))dx equals

    Text Solution

    |

  11. int(dx)/((1+sqrt(x))^8)=

    Text Solution

    |

  12. Iff^(prime)(x)=1/(-x+sqrt(x^2+1))a n df(0)=(1+sqrt(2))/2t h e nf(1) i...

    Text Solution

    |

  13. If int(sinx)/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+c then

    Text Solution

    |

  14. If intxlog(1+x^(2))dx=A(x).log(1+x^(2))+B(x)+c, then

    Text Solution

    |

  15. If int(sin3theta+sintheta)e^(sintheta)costhetad theta=(Asin^3theta+Bco...

    Text Solution

    |

  16. If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c, then

    Text Solution

    |

  17. int(dx)/(x^(5//6)(1+5x^(1//3))sqrt(1+4x^(1//3)))

    Text Solution

    |

  18. If int(x+(cos^(-1)3x)^(2))/(sqrt(1-9x^(2)))dx=Psqrt(1-9x^(2))+Q(cos^(-...

    Text Solution

    |

  19. If int(dx)/(x^(22)(x^7-6))=A{ln(p)^6+9p^2-2p^3-18 p}+c, then

    Text Solution

    |

  20. intx^(5)cos^(2)logsqrtxdx=

    Text Solution

    |