Home
Class 12
MATHS
Read the following passages and answer t...

Read the following passages and answer the following questions (7-9)
Consider the integrals of the form `l=inte^(x)(f(x)+f'(x))dx` By product rule considering `e^(x)f(x)` as first integral and `e^(x)f'(x)` as second one, we get `l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c`
`int((1)/(lnx)-(1)/((lnx)^(2)))dx` is equal to

A

`ln(lnx)+c`

B

`x+lnx+c`

C

`(x)/(lnx)+c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise MATCH THE COLUMNS|6 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS= II|1 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c l=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx then l is equal to

Integration of form e^(x)(f(x)+f'(x))dx

Evaluate: int e^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(x+1)dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)((x-1)/(x^(2)))dx = __________.

If int f(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to:

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to