Home
Class 12
MATHS
Read the following passages and answer t...

Read the following passages and answer the following questions (7-9)
Consider the integrals of the form `l=inte^(x)(f(x)+f'(x))dx` By product rule considering `e^(x)f(x)` as first integral and `e^(x)f'(x)` as second one, we get `l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c`
`l=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx` then l is equal to

A

`e^(x)(tan^(-1)x-(1)/(1+x^(2)))+c`

B

`e^(x)(tan^(-1)x+(1)/(1+x^(2)))+c`

C

`e^(x)(tan^(-1)x+(2)/(1+x^(2)))+c`

D

`e^(x)(tan^(-1)x-(2)/(1+x^(2)))+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINTE INTEGRAL

    FIITJEE|Exercise MATCH THE COLUMNS|6 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • INDEFINTE INTEGRAL

    FIITJEE|Exercise COMPREHENSIONS= II|1 Videos
  • HYPERBOLA

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int e^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

Integration of form e^(x)(f(x)+f'(x))dx

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(x+1)dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If f(x) = sin x then int(e^(f(x))(xcos^(3)x-f(x)))/(1-(f(x))^(2))dx is equal to

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)((x-1)/(x^(2)))dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.